Akagawa, M., K. Yamazaki, and K. Suyama. Cyclopentenosine, major trifunctional crosslinking amino acid isolated from acid hydrolysate of elastin. Arch. Biochem. Biophys. 372:112–120, 1999.
Arts, T., T. Delhaas, P. Bovendeerd, X. Verbeek, and F. W. Prinzen. Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am. J. Physiol. Heart Circ. Physiol. 288:H1943–H1954, 2005.
Ayad, S., R. Boot-Handford, M. J. Humphries, K. E. Kadler, and C. A. Shuttleworth. The Extracellular Matrix Factsbook. San Diego, CA: Academic Press/Harcourt Brace, p. 301, 1998.
Barker, D. J. Fetal origins of coronary heart disease. Br. Heart J. 69:195–196, 1993.
Bendeck, M. P., F. W. Keeley, and B. L. Langille. Perinatal accumulation of arterial wall constituents: relation to hemodynamic changes at birth. Am. J. Physiol. 267:H2268–H2279, 1994.
Bendeck, M. P., and B. L. Langille. Rapid accumulation of elastin and collagen in the aortas of sheep in the immediate perinatal period. Circ. Res. 69:1165–1169, 1991.
Bentley, J. P., and A. N. Hanson. The hydroxyproline of elastin. Biochim. Biophys. Acta 175:339–344, 1969.
Brama, P. A., J. M. Tekoppele, R. A. Bank, A. Barneveld, and P. R. van Weeren. Functional adaptation of equine articular cartilage: the formation of regional biochemical characteristics up to age one year. Equine Vet. J. 32:217–221, 2000.
Brommer, H., P. A. Brama, M. S. Laasanen, H. J. Helminen, P. R. van Weeren, and J. S. Jurvelin. Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Equine Vet. J. 37:148–154, 2005.
Brownlee, R. D., and B. L. Langille. Arterial adaptations to altered blood flow. Can. J. Physiol. Pharmacol. 69:978–983, 1991.
Burggren, W. Genetic, environmental and maternal influences on embryonic cardiac rhythms. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 124:423–427, 1999.
Chalmers, G. W., J. M. Gosline, and M. A. Lillie. The hydrophobicity of vertebrate elastins. J. Exp. Biol. 202:301–314, 1999.
Cock, M., M. Hanna, F. Sozo, M. Wallace, T. Yawno, K. Suzuki, G. Maritz, S. Hooper, and R. Harding. Pulmonary function and structure following mild preterm birth in lambs. Pediatr. Pulmonol. 40:336–348, 2005.
Daamen, W. F., T. Hafmans, J. H. Veerkamp, and T. H. Van Kuppevelt. Comparison of five procedures for the purification of insoluble elastin. Biomaterials 22:1997–2005, 2001.
Davidson, J. M., K. E. Hill, M. L. Mason, and M. G. Giro. Longitudinal gradients of collagen and elastin gene expression in the porcine aorta. J. Biol. Chem. 260:1901–1908, 1985.
Davis, E. C. Elastic lamina growth in the developing mouse aorta. J. Histochem. Cytochem. 43:1115–1123, 1995.
Davis, E. C. Stability of elastin in the developing mouse aorta: a quantitative radioautographic study. Histochemistry 100:17–26, 1993.
Davison, I. G., G. M. Wright, and M. E. DeMont. The structure and physical properties of invertebrate and primitive vertebrate arteries. J. Exp. Biol. 198:2185–2196, 1995.
Dorrington, K. L., and N. G. McCrum. Elastin as a rubber. Biopolymers 16:1201–1222, 1977.
Fowden, A. L., J. Li, and A. J. Forhead. Glucocorticoids and the preparation for life after birth: are there long-term consequences of the life insurance? Proc. Nutr. Soc. 57:113–122, 1998.
Fukuda, Y., V. J. Ferrans, and R. G. Crystal. Development of elastic fibers of nuchal ligament, aorta, and lung of fetal and postnatal sheep: an ultrastructural and electron microscopic immunohistochemical study. Am. J. Anat. 170:597–629, 1984.
Godfrey, M., P. A. Nejezchleb, G. B. Schaefer, D. J. Minion, Y. Wang, and B. T. Baxter. Elastin and fibrillin mRNA and protein levels in the ontogeny of normal human aorta. Connect. Tissue Res. 29:61–69, 1993.
Gosline, J. M. Hydrophobic interaction and a model for the elasticity of elastin. Biopolymers 17:677–695, 1978.
Gratzer, P. F., and J. M. Lee. Altered mechanical properties in aortic elastic tissue using glutaraldehyde/solvent solutions of various dielectric constant. J. Biomed. Mater. Res. 37:497–507, 1997.
Green, E., R. Ellis, and P. Winlove. The molecular structure and physical properties of elastin fibers as revealed by Raman microspectroscopy. Biopolymers 89:931–940, 2008.
Hoeve, C. A., and P. J. Flory. The elastic properties of elastin. Biopolymers 13:677–686, 1974.
Jaddoe, V. W., and J. C. Witteman. Hypotheses on the fetal origins of adult diseases: contributions of epidemiological studies. Eur. J. Epidemiol. 21:91–102, 2006.
Keeley, F. W. The synthesis of soluble and insoluble elastin in chicken aorta as a function of development and age. Effect of a high cholesterol diet. Can. J. Biochem. 57:1273–1280, 1979.
Kelleher, C. M., S. E. McLean, and R. P. Mecham. Vascular extracellular matrix and aortic development. Curr. Top. Dev. Biol. 62:153–188, 2004.
Keller, B. B., L. J. Liu, J. P. Tinney, and K. Tobita. Cardiovascular developmental insights from embryos. Ann. N. Y. Acad. Sci. 1101:377–388, 2007.
Lamberg, S. I., D. C. Poppke, and B. R. Williams. Isolation of elastic tissue microfibrils derived from cultured cells of calf ligamentum nuchae. Connect. Tissue Res. 8:1–8, 1980.
Langille, B. L. Arterial remodeling: relation to hemodynamics. Can. J. Physiol. Pharmacol. 74:834–841, 1996.
Lansing, A. I., T. B. Rosenthal, M. Alex, and E. W. Dempsey. The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy. Anat. Rec. 114:555–575, 1952.
Lawlor, D. A., G. Ronalds, H. Clark, G. D. Smith, and D. A. Leon. Birth weight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950s: findings from the Aberdeen Children of the 1950s prospective cohort study. Circulation 112:1414–1418, 2005.
Li, D. Y., G. Faury, D. G. Taylor, E. C. Davis, W. A. Boyle, R. P. Mecham, P. Stenzel, B. Boak, and M. T. Keating. Novel arterial pathology in mice and humans hemizygous for elastin. J. Clin. Invest. 102:1783–1787, 1998.
Li, J. K., J. Melbin, R. A. Riffle, and A. Noordergraaf. Pulse wave propagation. Circ. Res. 49:442–452, 1981.
Lillie, M. A., G. J. David, and J. M. Gosline. Mechanical role of elastin-associated microfibrils in pig aortic elastic tissue. Connect. Tissue Res. 37:121–141, 1998.
Lillie, M. A., and J. M. Gosline. Swelling and viscoelastic properties of osmotically stressed elastin. Biopolymers 39:641–652, 1996.
Lillie, M. A., and J. M. Gosline. The effects of hydration on the dynamic mechanical properties of elastin. Biopolymers 29:1147–1160, 1990.
Looker, T., and C. L. Berry. The growth and development of the rat aorta. II. Changes in nucleic acid and scleroprotein content. J. Anat. 113:17–34, 1972.
Lucitti, J. L., R. Visconti, J. Novak, and B. B. Keller. Increased arterial load alters aortic structural and functional properties during embryogenesis. Am. J. Physiol. Heart Circ. Physiol. 291:H1919–H1926, 2006.
MacKean, S. M. A Novel device for thermomechanical testing: thermomechanical study of the elastic mechanisms of latex and elastin. M.Sc. thesis, Physics and Atmospheric Science, Dalhousie University, 2002, 146 pp.
Maritz, G. S., M. L. Cock, S. Louey, B. J. Joyce, C. A. Albuquerque, and R. Harding. Effects of fetal growth restriction on lung development before and after birth: a morphometric analysis. Pediatr. Pulmonol. 32:201–210, 2001.
Maritz, G. S., C. J. Morley, and R. Harding. Early developmental origins of impaired lung structure and function. Early Hum. Dev. 81:763–771, 2005.
Martyn, C. N., and S. E. Greenwald. A hypothesis about a mechanism for the programming of blood pressure and vascular disease in early life. Clin. Exp. Pharmacol. Physiol. 28:948–951, 2001.
Martyn, C. N., and S. E. Greenwald. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet 350:953–955, 1997.
McConnell, C. J., M. E. DeMont, and G. M. Wright. Microfibrils provide non-linear elastic behaviour in the abdominal artery of the lobster Homarus americanus. J. Physiol. 499:513–526, 1997.
Mecham, R., and J. E. Heuser. The elastic fiber. In: Cell Biology of the Extracellular Matrix, edited by E. D. Hay. New York: Plenum Press, 1991, pp. 79–107.
Mecham, R. P., G. Lange, J. Madaras, and B. Starcher. Elastin synthesis by ligamentum nuchae fibroblasts: effects of culture conditions and extracellular matrix on elastin production. J. Cell Biol. 90:332–338, 1981.
Nakamura, T., M. Liu, E. Mourgeon, A. Slutsky, and M. Post. Mechanical strain and dexamethasone selectively increase surfactant protein C and tropoelastin gene expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 278:L974–980, 2000.
Opitz, F., K. Schenke-Layland, T. U. Cohnert, B. Starcher, K. J. Halbhuber, D. P. Martin, and U. A. Stock. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc. Res. 63:719–730, 2004.
Parks, W. C., H. Secrist, L. C. Wu, and R. P. Mecham. Developmental regulation of tropoelastin isoforms. J. Biol. Chem. 263:4416–4423, 1988.
Parks, W. C., L. A. Whitehouse, L. C. Wu, and R. P. Mecham. Terminal differentiation of nuchal ligament fibroblasts: characterization of synthetic properties and responsiveness to external stimuli. Dev. Biol. 129:555–564, 1988.
Paulovic, R. P., and R. A. Anwar. Developmental regulation of the mRNAs for elastins a, b and c in foetal-calf nuchal ligament and aorta. Biochem. J. 261:227–232, 1989.
Powell, J. T., N. Vine, and M. Crossman. On the accumulation of d-aspartate in elastin and other proteins of the ageing aorta. Atherosclerosis 97:201–208, 1992.
Rasmussen, B. L., E. Bruenger, and L. B. Sandberg. A new method for purification of mature elastin. Anal. Biochem. 64:255–259, 1975.
Ratcliffe, A. Tissue engineering of vascular grafts. Matrix Biol. 19:353–357, 2000.
Reeves, J. T., F. S. Daoud, and M. Gentry. Growth of the fetal calf and its arterial pressure, blood gases, and hematologic data. J. Appl. Physiol. 32:240–244, 1972.
Reinboth, B. J., M. L. Finnis, M. A. Gibson, L. B. Sandberg, and E. G. Cleary. Developmental expression of dermatan sulfate proteoglycans in the elastic bovine nuchal ligament. Matrix Biol. 19:149–162, 2000.
Ritz-Timme, S., I. Laumeier, and M. J. Collins. Aspartic acid racemization: evidence for marked longevity of elastin in human skin. Br. J. Dermatol. 149:951–959, 2003.
Roberts, S. J. Veterinary Obstetrics and Genital Diseases (Theriogenology). Ithaca, NY: David & Charles, 1986, 981 pp.
Ross, R., and P. Bornstein. The elastic fiber. I. The separation and partial characterization of its macromolecular components. J. Cell. Biol. 40:366–381, 1969.
Sedmera, D., T. Pexieder, V. Rychterova, N. Hu, and E. B. Clark. Remodeling of chick embryonic ventricular myoarchitecture under experimentally changed loading conditions. Anat. Rec. 254:238–252, 1999.
Sekulic, S. R., D. D. Lukac, and N. M. Naumovic. The fetus cannot exercise like an astronaut: gravity loading is necessary for the physiological development during second half of pregnancy. Med. Hypotheses 64:221–228, 2005.
Serafini-Fracassini, A., J. M. Field, and C. Armitt. Characterisation of the microfibrillar component of bovine ligamentum nuchae. Biochem. Biophys. Res. Commun. 65:1146–1152, 1975.
Serafini-Fracassini, A., J. M. Field, and M. Spina. The macromolecular organization of the elastin fibril. J. Mol. Biol. 100:73–84, 1976.
Shapiro, S. D., S. K. Endicott, M. A. Province, J. A. Pierce, and E. J. Campbell. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J. Clin. Invest. 87:1828–1834, 1991.
Sherratt, M. J., C. Baldock, J. L. Haston, D. F. Holmes, C. J. Jones, C. A. Shuttleworth, T. J. Wess, and C. M. Kielty. Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J. Mol. Biol. 332:183–193, 2003.
Starcher, B. C., and M. J. Galione. Purification and comparison of elastins from different animal species. Anal. Biochem. 74:441–447, 1976.
Steven, F. S., and D. S. Jackson. Isolation and amino acid composition of insoluble elastin. Bovine foetal and adult aorta and ligamentum nuchae. Biochim. Biophys. Acta. 168:334–340, 1968.
Steven, F. S., R. J. Minns, and H. Thomas. The isolation of chemically pure elastins in a form suitable for mechanical testing. Connect. Tissue Res. 2:85–90, 1974.
Struijk, P. C., J. W. Wladimiroff, W. C. J. Hop, and E. Simonazzi. Pulse pressure assessment in the human fetal descending aorta. Ultrasound Med. Biol. 18:39–43, 1992.
Taber, L. A., and D. W. Eggers. Theoretical study of stress-modulated growth in the aorta. J. Theor. Biol. 180:343–357, 1996.
Tamburro, A. M., B. Bochicchio, and A. Pepe. The dissection of human tropoelastin: from the molecular structure to the self-assembly to the elasticity mechanism. Pathol. Biol. (Paris) 53:383–389, 2005.
Tatham, A. S., and P. R. Shewry. Comparative structures and properties of elastic proteins. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357:229–234, 2002.
Treloar, L. R. G. The Physics of Rubber Elasticity. Oxford: Carendon Press, p. 310, 1975.
Urry, D. W., T. Hugel, M. Seitz, H. E. Gaub, L. Sheiba, J. Dea, J. Xu, and T. Parker. Elastin: a representative ideal protein elastomer. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357:169–184, 2002.
Verburg, B. O., V. W. Jaddoe, J. W. Wladimiroff, A. Hofman, J. C. Witteman, and E. A. Steegers. Fetal hemodynamic adaptive changes related to intrauterine growth: the Generation R Study. Circulation 117:649–659, 2008.
Wagenseil, J. E., C. H. Ciliberto, R. H. Knutsen, M. A. Levy, A. Kovacs, and R. P. Mecham. Reduced vessel elasticity alters cardiovascular structure and function in newborn mice. Circ. Res. 104:1217–1224, 2009.
Waldman, S. D., and J. M. Lee. Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues. Biomaterials 26:7504–7513, 2005.
Ward, I. M. Mechanical Properties of Solid Polymers. London: Wiley, pp. 79–107, 1983.
Watanabe, M., T. Sawai, H. Nagura, and K. Suyama. Age-related alteration of cross-linking amino acids of elastin in human aorta. Tohoku J. Exp. Med. 180:115–130, 1996.
Wells, S. M., B. L. Langille, and S. L. Adamson. In vivo and in vitro mechanical properties of the sheep thoracic aorta in the perinatal period and adulthood. Am. J. Physiol. 274:H1749–H1760, 1998.
Wells, S. M., B. L. Langille, J. M. Lee, and S. L. Adamson. Determinants of mechanical properties in the developing ovine thoracic aorta. Am. J. Physiol. 277:H1385–1391, 1999.
Wells, S. M., and S. M. MacKean. Ramped versus stepwise thermoelastic testing of latex and elastic tissues. Biomed. Sci. Instrum. 43:206–211, 2007.
Wells, S. M., and S. M. MacKean. Thermomechanical testing of elastic tissues: problems in assessing energetic mechanisms. In: Society for Biomaterials 29th Annual Meeting, Tampa, FL, 2003, p. 202.
Wells, S. M., and E. J. Walter. Changes in the mechanical properties and residual strain of elastic tissue in the developing fetal aorta. Ann. Biomed. Eng. Oct 27, 2009 [Epub ahead of print].
Zhang, H., W. Hu, and F. Ramirez. Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J. Cell Biol. 129:1165–1176, 1995.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4