Barber, C. B., D. P. Dobkin, and H. T. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Trans. Math. Software 22:469–483, 1996.
Beer, R. F., J. P. Dewald, M. L. Dawson, and W. Z. Rymer. Target-dependent differences between free and constrained arm movements in chronic hemiparesis. Exp. Brain Res. 156:458–470, 2004.
Canning, C. G., L. Ada, R. Adams, and N. J. O’Dwyer. Loss of strength contributes more to physical disability after stroke than loss of dexterity. Clin. Rehabil. 18:300–308, 2004.
Canning, C. G., L. Ada, and N. J. O’Dwyer. Abnormal muscle activation characteristics associated with loss of dexterity after stroke. J. Neurol. Sci. 176:45–56, 2000.
Chae, J., G. Yang, B. K. Park, and I. Labatia. Muscle weakness and cocontraction in upper limb hemiparesis: relationship to motor impairment and physical disability. Neurorehabil. Neural Repair 16:241–248, 2002.
Cruz, E. G., and D. G. Kamper. Kinematics of point-to-point finger movements. Exp. Brain Res. 174:29–34, 2006.
Cruz, E. G., H. C. Waldinger, and D. G. Kamper. Kinetic and kinematic workspaces of the index finger following stroke. Brain 128:1112–1121, 2005.
Darling, W. G., and K. J. Cole. Muscle activation patterns and kinetics of human index finger movements. J. Neurophysiol. 63:1098–1108, 1990.
Jack, D., R. Boian, A. S. Merians, M. Tremaine, G. C. Burdea, S. V. Adamovich, M. Recce, and H. Poizner. Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9:308–318, 2001.
Kahn, L. E., P. S. Lum, W. Z. Rymer, and D. J. Reinkensmeyer. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J. Rehabil. Res. Dev. 43:619–630, 2006.
Kamper, D. G., E. G. Cruz, and M. P. Siegel. Stereotypical fingertip trajectories during grasp. J. Neurophysiol. 90:3702–3710, 2003.
Kamper, D. G., H. C. Fischer, E. G. Cruz, and W. Z. Rymer. Weakness is the primary contributor to finger impairment in chronic stroke. Arch. Phys. Med. Rehabil. 87:1262–1269, 2006.
Kamper, D. G., and W. Z. Rymer. Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke. Muscle Nerve 23:954–961, 2000.
Lang, C. E., and M. H. Schieber. Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J. Neurophysiol. 92:2802–2810, 2004.
Li, Z. M., G. Davis, N. P. Gustafson, and R. J. Goitz. A robot-assisted study of intrinsic muscle regulation on proximal interphalangeal joint stiffness by varying metacarpophalangeal joint position. J. Orthop. Res. 24:407–415, 2006.
Mali, U., N. Goljar, and M. Munih. Application of haptic interface for finger exercise. IEEE Trans. Neural Syst. Rehabil. Eng. 14:352–360, 2006.
Mallon, W. J., H. R. Brown, and J. A. Nunley. Digital ranges of motion: normal values in young adults. J. Hand. Surg. [Am.] 16:882–887, 1991.
Patten, C., J. Lexell, and H. E. Brown. Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. J. Rehabil. Res. Dev. 41:293–312, 2004.
Patton, J. L., M. E. Stoykov, M. Kovic, and F. A. Mussa-Ivaldi. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp. Brain Res. 168:368–383, 2006.
Powers, R. K., J. Marder-Meyer, and W. Z. Rymer. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann. Neurol. 23:115–124, 1988.
Rosamond, W., K. Flegal, G. Friday, K. Furie, A. Go, K. Greenlund, N. Haase, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. McDermott, J. Meigs, C. Moy, G. Nichol, C. J. O’Donnell, V. Roger, J. Rumsfeld, P. Sorlie, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, and Y. Hong. Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171, 2007.
Sanchez, R. J., J. Liu, S. Rao, P. Shah, R. Smith, T. Rahman, S. C. Cramer, J. E. Bobrow, and D. J. Reinkensmeyer. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans. Neural Syst. Rehabil. Eng. 14:378–389, 2006.
Spong, M. W., S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. London: John Wiley & Sons, Inc, 2006.
Takahashi, C. D., L. Der-Yeghiaian, V. Le, R. R. Motiwala, and S. C. Cramer. Robot-based hand motor therapy after stroke. Brain 131:425–437, 2008.
Thom, T., N. Haase, W. Rosamond, V. J. Howard, J. Rumsfeld, T. Manolio, Z. J. Zheng, K. Flegal, C. O’Donnell, S. Kittner, D. Lloyd-Jones, D. C. Goff, Jr., Y. Hong, R. Adams, G. Friday, K. Furie, P. Gorelick, B. Kissela, J. Marler, J. Meigs, V. Roger, S. Sidney, P. Sorlie, J. Steinberger, S. Wasserthiel-Smoller, M. Wilson, and P. Wolf. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85–e151, 2006.
Thoroughman, K. A., and R. Shadmehr. Learning of action through adaptive combination of motor primitives. Nature 407:742–747, 2000.
Trombly, C. Occupational Therapy for Physical Dysfunction. Baltimore: Williams and Wilkins, 1989.
Wade, D. The Epidemiologically Based Needs Assessment Reviews, Vol. I. Oxford: Radcliffe Medical Press, pp. 111–255, 1994.
Wege, A., and A. Zimmerman. Electromyography sensor based control for a hand exoskeleton. In: IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007, pp. 1470–1475.
Wolbrecht, E. T., V. Chan, D. J. Reinkensmeyer, and J. E. Bobrow. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16:286–297, 2008.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4