A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-009-9819-6 below:

A Comparative Study of Intracranial EEG Files Using Nonlinear Classification Methods

References
  1. Abend, N. S., D. Dlugos, and S. Herman. Neonatal seizure detection using multichannel display of envelope trend. Epilepsia 49(2):349–352, 2008.

    Article  PubMed  Google Scholar 

  2. Adjouadi, M., M. Cabrerizo, M. Ayala, D. Sanchez, P. Jayakar, I. Yaylali, and A. Barreto. Detection of interictal spikes and artifactual data through orthogonal transformations. J. Clin. Neurophysiol. 22(1):53–64, 2005.

    Article  PubMed  Google Scholar 

  3. Adjouadi, M., M. Cabrerizo, M. Ayala, D. Sanchez, P. Jayakar, I. Yaylali, and A. Barreto. Interictal spike detection using the Walsh transform. IEEE Trans. Biomed. Eng. 51(5):868–873, 2004.

    Article  PubMed  Google Scholar 

  4. Albano, A. M., C. J. Cellucci, R. N. Harner, and P. E. Rapp, Optimization of embedding parameters for prediction of seizure onset with mutual information. In: Nonlinear Dynamics and Statistics: Proceedings of an Issac Newton Institute, edited by A.I. MEES. Boston: Birkhauser, 2000, pp. 435–451.

  5. Arnhold, J., K. Lehnertz, P. Grassberger, and C. E. Elger. A robust method for detecting interdependences: Application to intracranially recorded EEG. Physica D 134:419, 1999.

    Article  Google Scholar 

  6. Bezerianos, A., S. Tong, and N. Thakor. Time-dependent entropy estimation of EEG rhythm changes following brain ischemia. Ann. Biomed. Eng. 31:221–232, 2003.

    Article  CAS  PubMed  Google Scholar 

  7. Bragin, A., C. L. Wilson, T. Fields, I. Fried, and J. Engel, Jr. Analysis of seizure onset on the basis of wideband EEG recordings. Epilepsia 46:59–63, 2005.

    Article  PubMed  Google Scholar 

  8. Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2):121–167, 1998.

    Article  Google Scholar 

  9. Cabrerizo, M., M. Adjouadi, M. Ayala, and M. Tito. Pattern extraction in interictal EEG recordings towards detection of electrodes leading to seizures. Biomed. Sci. Instrum. 42:243–248, 2006.

    Google Scholar 

  10. Cabrerizo, M., M. Tito, M. Ayala, M. Adjouadi, A. Barreto, and P. Jayakar. An analysis of subdural EEG parameters for epileptic seizure evaluation. In: CD Proceedings of the 16th International Conference on Computing CIC-2007, Mexico City, Mexico, 2007.

  11. Calvagno, G., M. Ermani, R. Rinaldo, and F. Sartoretto. Multiresolution approach to spike detection in EEG. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 6, pp. 3582–3585, 2006.

  12. Chander, R., E. Urrestarrazu, and J. Gotman. Automatic detection of high frequency oscillations in human intracerebral EEGs. Epilepsia 47(4):37, 2006.

    Google Scholar 

  13. Cristianini, N., and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge, UK: Cambridge University Press, 2000, 208 pp.

  14. D’Alessandro, M., R. Esteller, G. Vachtsevanos, A. Hinson, J. Echauz, and B. Litt. Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans. Biomed. Eng. 50(5):603–615, 2003.

    Article  PubMed  Google Scholar 

  15. Frank, G. W., T. Lookman, M. A. H. Nerenberg, C. Essex, J. Lemieux, and W. Blume. Chaotic time series analyses of epileptic seizures. Physica D 46:427–438, 1990.

    Article  Google Scholar 

  16. Gabor, A. J. Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies. Electroencephalogr. Clin. Neurophysiol. 107(1):27–32, 1998.

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh-Dastidar, S., H. Adeli, and N. Dadmehr. Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2–1):512–518, 2008.

    Article  PubMed  Google Scholar 

  18. Good, L. B., S. Sabesan, S. T. Marsh, K. Tsakalis, L. D. Iasemidis, and D. M. Treiman. Automated seizure prediction and deep brain stimulation control in epileptic rats. Epilepsia 48(6):278, 2007.

    Google Scholar 

  19. Gotman, J. Automatic detection of seizures and spikes. J. Clin. Neurophysiol. 16:130–140, 1999.

    Article  CAS  PubMed  Google Scholar 

  20. Gotman, J. Automatic recognition of epileptic seizures in the EEG. Electroencephalogr. Clin. Neurophysiol. 54:530–540, 1982.

    Article  CAS  PubMed  Google Scholar 

  21. Guevara, M. R. Chaos in electrophysiology. In: Concepts and Techniques in Bioelectric Measurements: Is the Medium Carrying the Message? edited by A.-R. LeBlanc, and J. Billette. Montreal: Editions de l’Ecole Polytechnique de Montreal, 1997, pp. 67–87

    Google Scholar 

  22. Hjorth, B. The physical significance of time domain descriptors in EEG analysis. Electroencephalogr. Clin. Neurophysiol. 34:321–325, 1970.

    Google Scholar 

  23. Iasemidis, L. D., A. Barreto, R. L. Gilmore, B. M. Uthman, S. A. Roper, and J. C. Sackellares. Spatiotemporal evolution of dynamical measures precedes onset of mesial temporal lobe seizures. Epilepsia 35:133–134, 1994.

    Google Scholar 

  24. Iasemidis, L. D., J. C. Sackellares, R. L. Gilmore, and S. N. Roper. Automated seizure prediction paradigm. Epilepsia 39:56, 1998.

    Google Scholar 

  25. Kobayashi, K., I. Merlet, and J. Gotman. Separation of spikes from background by independent component analysis with dipole modeling and comparison to intracranial recording. Clin. Neurophysiol. 112(3):405–413, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Lai, Y. C., M. A. Harrison, M. G. Frei, and I. Osorio. Inability of Lyapunov exponents to predict epileptic seizures. Phys. Rev. Lett. 8:91–96, 2003.

    Google Scholar 

  27. Larter, R., and B. Speelman. A coupled ordinary differential equation lattice model for the simulation of epileptic seizures. Chaos 9:795–804, 1999.

    Article  PubMed  Google Scholar 

  28. Levan, P., L. Tyvaert, and J. Gotman. Model-free detection of bold changes related to epileptic discharges using independent component analysis. Epilepsia 48(6):397–398, 2007.

    Google Scholar 

  29. Martinerie, J., C. Adam, and M. Le Van Ouyen. Epileptic seizures can be anticipated by non-linear analysis. Nat. Med. 4:1173–1176, 1998.

    Article  CAS  PubMed  Google Scholar 

  30. Sackellares, J.C., and L.D. Iasemidis. Seizure warning and prediction. Patent number US 6304775 B1, 2001.

  31. Shoeb, A., H. Edwards, J. Connolly, B. Bourgeois, T. Treves, and J. Guttag, Patient-specific seizure onset detection. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1–5, 2004.

  32. Smart, O., H. Firpi, and G. Vachtsevanos. Genetic programming of conventional features to detect seizure precursors. Eng. Appl. Artif. Intel. 20(8):1070–1085, 2007.

    Article  Google Scholar 

  33. Tou, J. T., and R. C. Gonzalez. Pattern Recognition Principles. Reading, MA: Addison-Wesley, 1974.

    Google Scholar 

  34. Vapnik, V. N. The Nature of Statistical Learning Theory. New York: Springer, 1995.

    Google Scholar 

  35. Vapnik, V. N., and A. J. Chervonenkis. Theory of Pattern Recognition. Moscow: Nauka, 1974.

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4