Brown, J. D., J. Rosen, M. N. Sinaman, and B. Hannaford. In vivo and postmortem compressive properties of porcine abdominal organs. In: Medical Image Computing and Computer-Assisted Intervention, MICCAI 2003, No. 2878 in Lecture Notes in Computer Science, 2003, pp. 238–245.
Butler, D. L., E. S. Grood, F. R. Noyes, R. F. Zernicke, and K. Brackett. Effects of structure and strain measurement technique on the material properties of young human tendons and fascia. J. Biomech. 17(8):579–596, 1984.
Carter, F., T. Frank, P. Davies, D. McLean, and A. Cuschieri. Measurements and modelling of the compliance of human and porcine organs. Med. Image Anal. 5:231–236, 2001.
Charlton, D., J. Yang, and K Teh. A review of methods to characterize rubber elastic behavior for use in finite element analysis. Rubber Chem. Technol. 67:481–503, 1994.
Chui, C., E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma. Combined compression and elongation experiments and non-linear modelling of liver tissue for surgical simulation. Med. Biol. Eng. Comput. 42(6):787–798, 2004.
Chui, C., E. Kobayashi, X. Chen, T. Hisada, and I. Sakuma. Transversely isotropic properties of porcine liver tissue: experiments and constitutive modelling. Med. Biol. Eng. Comput. 45(1):99–106, 2007.
Davies, P. J., F. J. Carter, and A. Cuschieri. Mathematical modelling for keyhold surgery simulations: a biomechanical model for spleen tissue. IMA J. Appl. Math. 67:41–67, 2002.
Dokos, S., I. J. LeGrice, B. H. Smaill, J. Kar, and A. A. Young. A triaxial-measurement shear-test device for soft biological tissues. J. Biomech. Eng. 122:471–478, 2000.
Dokos, S., B. H. Smaill, A. A. Young, and I. J. LeGrice. Shear properties of passive ventricular myocardium. Am. J. Physiol.-Heart Circ. Physiol. 283:H2650–H2659, 2002.
Farshad, M., M. Barbezat, P. Flueler, F. Schmidlin, P. Graber, and P. Niederer. Material characterization of the pig kidney in relation with the biomechanical analysis of renal trauma. J. Biomech. 32:417–425, 1999.
Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.
Gao, Z., and J. P. Desai. Estimating zero strain states of very soft tissue under gravity loading using digital image correlation. In review.
Gao, Z., K. Lister, and J. P. Desai. Constitutive modeling of liver tissue: experiment and theory. In: Second Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008, 2008, pp. 477–482.
Gardiner, J. C., and J. A. Weiss. Simple shear testing of parallel-fibered plannar soft tissues. J. Biomech. Eng. 123:170–175, 2001.
Guo, D. L., B. S. Chen, and N. S. Liou. Investigating full-field deformation of planar soft tissue under simple-shear tests. J. Biomech. 40(5):1165–1170, 2007.
Ham, A. W. Histology (6th ed.), Chap. Pancreas, Liver and Gallbladder. Philadelphia and Toronto: J. B. Lippincott Company, pp. 711–717, 1969.
Hollenstein, M., A. Nava, D. Valtorta, J. G. Snedeker, and E. Mazza. Biomedical Simulation, Lecture Notes in Computer Science, Vol. 4072, Chap. Mechanical Characterization of the Liver Capsule and Parenchyma. Berlin/Heidelberg: Springer, pp. 150–158, 2006.
Hu, T., and J. P. Desai. Modeling large deformation in soft-tissues: experimental results and analysis. In: EuroHaptics. Munich, Germany, 2004.
Hu, T., C. Lau, and J. P. Desai. Instrumentation for testing soft-tissue undergoing large deformation: ex vivo and in vivo studies. ASME J. Med. Devices 2(4):041001-1–041001-6, 2008.
Jordan, P., S. Socrate, T. Zickler, and R. Howe. Constitutive modeling of porcine liver in indentation using 3d ultrasound imaging. J. Mech. Behav. Biomed. Mater. 2:192–201, 2009.
Kerdok, A. E., M. P. Ottensmeyer, and R. D. Howe. Effects of perfusion on the viscoelastic characteristics of liver. J. Biomech. 39:2221–2231, 2006.
Mazza, E., A. Nava, D. Hahnloser, W. Jochum, and M. Bajka. The mechanical response of human liver and its relation to histology: an in vivo study. Med. Image Anal. 11:663–672, 2007.
Miller, K. Constitutive modelling of abdominal organs. J. Biomech. 33:367–373, 2000.
Miller, K., and K. Chinzei. Constitutive modelling of brain tissue: experiment and theory. J. Biomech. 30:1115–1121, 1997.
Miller, K., and K. Chinzei. Mechanical properties of brain tissue in tension. J. Biomech. 35(4):483–490, 2002.
Miller, K., Z. Taylor, and W. L. Nowinski. Towards computing brain deformations for diagnosis, prognosis and neurosurgical simulation. J. Mech. Med. Biol. 5(1):105–121, 2005.
Nava, A., E. Mazza, M. Furrer, P. Villiger, and W. Reinhart. In vivo mechanical characterization of human liver. Med. Image Anal. 12:203–216, 2008.
Ogden, R. Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. Ser. A 326:565–584, 1972.
Paulsen, K. D., M. I. Miga, F. E. Kennedy, P. J. Hoopes, A. Hartov, and D. W. Roberts. A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 46(2):213–225, 1999.
Roan, E., and K. Vemaganti. The nonlinear material properties of liver tissue determined from non-slip uniaxial compression experiments. J. Biomech. Eng. 129:450–456, 2007.
Saraf, H., K. Ramesh, A. Lennon, A. Merkle, and J. Roberts. Measurement of the dynamic bulk and shear response of soft human tissues. Exp. Mech. 47:439–449, 2007.
Shuck, L. Z., and S. H. Advani. Rheological response of human brain tissue in shear. J. Basic Eng. 94(4):905–911, 1972.
Valtorta, D., and E. Mazza. Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device. Med. Image Anal. 9:481–490, 2005.
Vito, R. P., and S. A. Dixon. Blood vessel constitutive models—1995–2002. Annu. Rev. Biomed. Eng. 5:413–439, 2003.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4