Abe, H., K. Hayashi, and M. Sato. Data book on mechanical properties of living cells, tissues, and organs. Tokyo: Springer-Verlag, p. 436, 1996.
An, K. N., Y. L. Sun, and Z. P. Luo. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 41:239–246, 2004.
Balgude, A. P., X. Yu, A. Szymanski, and R. V. Bellamkonda. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084, 2001.
Ben-Ze’ev, A., G. S. Robinson, N. L. Bucher, and S. R. Farmer. Cell–cell and cell–matrix interactions differentially regulate the expression of hepatic and cytoskeletal genes in primary cultures of rat hepatocytes. Proc. Natl Acad. Sci. USA 85:2161–2165, 1988.
Beningo, K. A., M. Dembo, and Y. L. Wang. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc. Natl Acad. Sci. USA 101:18024–18029, 2004.
Boonen, K. J., K. Y. Rosaria-Chak, F. P. Baaijens, D. W. van der Schaft, and M. J. Post. Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am. J. Physiol. Cell. Physiol. 296:C1338–C1345, 2009.
Boontheekul, T., E. E. Hill, H. J. Kong, and D. J. Mooney. Regulating myoblast phenotype through controlled gel stiffness and degradation. Tissue Eng. 13:1431–1442, 2007.
Bryant, S. J., and K. S. Anseth. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59:63–72, 2002.
Bryant, S. J., R. J. Bender, K. L. Durand, and K. S. Anseth. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnol. Bioeng. 86:747–755, 2004.
Bryant, S. J., T. T. Chowdhury, D. A. Lee, D. L. Bader, and K. S. Anseth. Crosslinking density influences chondrocyte metabolism in dynamically loaded photocrosslinked poly(ethylene glycol) hydrogels. Ann. Biomed. Eng. 32:407–417, 2004.
Burton, K., and D. L. Taylor. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385:450–454, 1997.
Califano, J. P., and C. A. Reinhart-King. A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Mol. Bioeng. 1:122–132, 2008.
Chen, Q., S. I. Ringleb, A. Manduca, R. L. Ehman, and K. N. An. A finite element model for analyzing shear wave propagation observed in magnetic resonance elastography. J. Biomech. 38:2198–2203, 2005.
Collin, O., P. Tracqui, A. Stephanou, Y. Usson, J. Clement-Lacroix, and E. Planus. Spatiotemporal dynamics of actin-rich adhesion microdomains: influence of substrate flexibility. J. Cell Sci. 119:1914–1925, 2006.
Cukierman, E., R. Pankov, D. R. Stevens, and K. M. Yamada. Taking cell–matrix adhesions to the third dimension. Science 294:1708–1712, 2001.
Deroanne, C. F., C. M. Lapiere, and B. V. Nusgens. In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49:647–658, 2001.
Engler, A., L. Bacakova, C. Newman, A. Hategan, M. Griffin, and D. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.
Engler, A., L. Richert, J. Y. Wong, C. Picart, and D. Discher. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570:142–154, 2004.
Engler, A. J., C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang, D. W. Speicher, J. W. Sanger, J. M. Sanger, and D. E. Discher. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–3802, 2008.
Engler, A. J., M. A. Griffin, S. Sen, C. G. Bonnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166:877–887, 2004.
Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.
Flanagan, L. A., Y. E. Ju, B. Marg, M. Osterfield, and P. A. Janmey. Neurite branching on deformable substrates. Neuroreport 13:2411–2415, 2002.
Georges, P. C., W. J. Miller, D. F. Meaney, E. S. Sawyer, and P. A. Janmey. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90:3012–3018, 2006.
Ghosh, K., Z. Pan, E. Guan, S. Ge, Y. Liu, T. Nakamura, X. D. Ren, M. Rafailovich, and R. A. Clark. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 28:671–679, 2007.
Gomez, M. A. and A. M. Nahum. Biomechanics of bone. In: Accidental Injury: Biomechanics and Prevention, edited by A. M. Nahum and J. W. Melvin. New York: Springer-Verlag, 2002, pp. 206–227.
Gray, D. S., J. Tien, and C. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. A 66:605–614, 2003.
Gunn, J. W., S. D. Turner, and B. K. Mann. Adhesive and mechanical properties of hydrogels influence neurite extension. J. Biomed. Mater. Res. A 72:91–97, 2005.
Guo, W. H., M. T. Frey, N. A. Burnham, and Y. L. Wang. Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90:2213–2220, 2006.
Haut, R. C. Biomechanics of soft tissue. In: Accidental Injury: Biomechanics and Prevention, edited by A. M. Nahum and J. W. Melvin. New York: Springer-Verlag, 2002, pp. 228–253.
Hsiong, S. X., P. Carampin, H. J. Kong, K. Y. Lee, and D. J. Mooney. Differentiation stage alters matrix control of stem cells. J. Biomed. Mater. Res. A 85:145–156, 2008.
Ingber, D. E. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 116:1397–1408, 2003.
Ingber, D. E. Mechanical control of tissue morphogenesis during embryological development. Int. J. Dev. Biol. 50:255–266, 2006.
Ingber, D. E., and J. Folkman. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J. Cell Biol. 109:317–330, 1989.
Jacot, J. G., A. D. McCulloch, and J. H. Omens. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95:3479–3487, 2008.
Jiang, F. X., B. Yurke, B. L. Firestein, and N. A. Langrana. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann. Biomed. Eng. 36:1565–1579, 2008.
Jiang, G., A. H. Huang, Y. Cai, M. Tanase, and M. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys. J. 90:1804–1809, 2006.
Khatiwala, C. B., P. D. Kim, S. R. Peyton, and A. J. Putnam. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24:886–898, 2009.
Khatiwala, C. B., S. R. Peyton, and A. J. Putnam. Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell. Physiol. 290:C1640–C1650, 2006.
Kong, H. J., T. R. Polte, E. Alsberg, and D. J. Mooney. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl Acad. Sci. USA 102:4300–4305, 2005.
Kostic, A., C. D. Lynch, and M. P. Sheetz. Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One 4:e6361, 2009.
Leach, J. B., X. Q. Brown, J. G. Jacot, P. A. Dimilla, and J. Y. Wong. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J. Neural Eng. 4:26–34, 2007.
Lee, E. Y., G. Parry, and M. J. Bissell. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J. Cell Biol. 98:146–155, 1984.
Li, M. L., J. Aggeler, D. A. Farson, C. Hatier, J. Hassell, and M. J. Bissell. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc. Natl Acad. Sci. USA 84:136–140, 1987.
Li, Z., J. A. Dranoff, E. P. Chan, M. Uemura, J. Sevigny, and R. G. Wells. Transforming growth factor-beta and substrate stiffness regulate portal fibroblast activation in culture. Hepatology 46:1246–1256, 2007.
Lin, Y. C., and F. Grinnell. Decreased level of PDGF-stimulated receptor autophosphorylation by fibroblasts in mechanically relaxed collagen matrices. J. Cell Biol. 122:663–672, 1993.
Lindblad, W. J., E. G. Schuetz, K. S. Redford, and P. S. Guzelian. Hepatocellular phenotype in vitro is influenced by biophysical features of the collagenous substratum. Hepatology 13:282–288, 1991.
Lo, C. M., H. B. Wang, M. Dembo, and Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–152, 2000.
McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–495, 2004.
Mih, J. D., and D. J. Tschumperlin. Lung fibroblast behavior is tuned by substrate stiffness. Proc. Am. Thorac. Soc. 5:364–365, 2008.
Oakes, P. W., D. C. Patel, N. A. Morin, D. P. Zitterbart, B. Fabry, J. S. Reichner, and J. X. Tang. Neutrophil morphology and migration are affected by substrate elasticity. Blood 114:1387–1395, 2009.
Oster, G. F., J. D. Murray, and A. K. Harris. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. Exp. Morphol. 78:83–125, 1983.
Park, Y., M. P. Lutolf, J. A. Hubbell, E. B. Hunziker, and M. Wong. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair. Tissue Eng. 10:515–522, 2004.
Paszek, M. J., and V. M. Weaver. The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia 9:325–342, 2004.
Paszek, M. J., N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, C. A. Reinhart-King, S. S. Margulies, M. Dembo, D. Boettiger, D. A. Hammer, and V. M. Weaver. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254, 2005.
Pelham, Jr., R. J., and Y. Wang. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94:13661–13665, 1997.
Pellegrin, S., and H. Mellor. Actin stress fibres. J. Cell Sci. 120:3491–3499, 2007.
Peyton, S. R., P. D. Kim, C. M. Ghajar, D. Seliktar, and A. J. Putnam. The effects of matrix stiffness and RhoA on the phenotypic plasticity of smooth muscle cells in a 3-D biosynthetic hydrogel system. Biomaterials 29:2597–2607, 2008.
Peyton, S. R., and A. J. Putnam. Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204:198–209, 2005.
Peyton, S. R., C. B. Raub, V. P. Keschrumrus, and A. J. Putnam. The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27:4881–4893, 2006.
Polte, T. R., G. S. Eichler, N. Wang, and D. E. Ingber. Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. Am. J. Physiol. Cell. Physiol. 286:C518–C528, 2004.
Reinhart-King, C. A., M. Dembo, and D. A. Hammer. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95:6044–6051, 2008.
Rowlands, A. S., P. A. George, and J. J. Cooper-White. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am. J. Physiol. Cell. Physiol. 295:C1037–C1044, 2008.
Saez, A., M. Ghibaudo, A. Buguin, P. Silberzan, and B. Ladoux. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104:8281–8286, 2007.
Saha, K., A. Keung, E. Irwin, Y. Li, L. Little, D. Schaffer, and K. E. Healy. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–4438, 2008.
Samani, A., J. Zubovits, and D. Plewes. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Phys. Med. Biol. 52:1565–1576, 2007.
Schlaepfer, D. D., S. K. Mitra, and D. Ilic. Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim. Biophys. Acta 1692:77–102, 2004.
Semler, E. J., P. A. Lancin, A. Dasgupta, and P. V. Moghe. Engineering hepatocellular morphogenesis and function via ligand-presenting hydrogels with graded mechanical compliance. Biotechnol. Bioeng. 89:296–307, 2005.
Silver, F. H., Y. P. Kato, M. Ohno, and A. J. Wasserman. Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties. J. Long Term Eff. Med. Implants 2:165–198, 1992.
Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93:4453–4461, 2007.
Stichel, C. C., and H. W. Muller. The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res. 294:1–9, 1998.
Stroka, K. M., and H. Aranda-Espinoza. Neutrophils display biphasic relationship between migration and substrate stiffness. Cell Motil. Cytoskeleton 66:328–341, 2009.
Teixeira, A. I., S. Ilkhanizadeh, J. A. Wigenius, J. K. Duckworth, O. Inganas, and O. Hermanson. The promotion of neuronal maturation on soft substrates. Biomaterials 30:4567–4572, 2009.
Tzvetkova-Chevolleau, T., A. Stephanou, D. Fuard, J. Ohayon, P. Schiavone, and P. Tracqui. The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29:1541–1551, 2008.
Wang, H. B., M. Dembo, S. K. Hanks, and Y. Wang. Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proc. Natl Acad. Sci. USA 98:11295–11300, 2001.
Wang, H. B., M. Dembo, and Y. L. Wang. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell. Physiol. 279:C1345–C1350, 2000.
Wong, J. Y., A. Velasco, P. Rajagopalan, and Q. Pham. Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913, 2003.
Yeh, W. C., P. C. Li, Y. M. Jeng, H. C. Hsu, P. L. Kuo, M. L. Li, P. M. Yang, and P. H. Lee. Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28:467–474, 2002.
Yeung, T., P. C. Georges, L. A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P. A. Janmey. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60:24–34, 2005.
Yu, X., and R. V. Bellamkonda. Dorsal root ganglia neurite extension is inhibited by mechanical and chondroitin sulfate-rich interfaces. J. Neurosci. Res. 66:303–310, 2001.
Zaari, N., P. Rajagopalan, S. K. Kim, A. J. Engler, and J. Y. Wong. Photopolymerization in microfluidic gradient generators: microscale control of substrate compliance to manipulate cell response. Adv. Mater. 16:2133–2137, 2004.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4