A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-009-9807-x below:

High-Resolution Fluid–Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta

References
  1. Borazjani, I. Numerical simulations of fluid/structure interaction problems in biological flows. PhD thesis, University of Minnesota, June 2008.

  2. Borazjani, I., L. Ge, and F. Sotiropoulos. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3d rigid bodies. J. Comput. Phys. 227(16):7587–7620, 2008.

    Article  Google Scholar 

  3. Borazjani, I., and F. Sotiropoulos. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Exp. Biol. 211:1541–1558, 2008.

    Article  PubMed  Google Scholar 

  4. Chandran, K. B., G. N. Cabell, B. Khalighi, and C. J. Chen. Laser anemometry measurements of pulsatile flow past aortic valve prostheses. J. Biomech. 16(10):865–873, 1983.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng, R., Y. G. Lai, and K. B. Chandran. Two-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 12(6):772–780, 2003.

    PubMed  Google Scholar 

  6. Cheng, R., Y. G. Lai, and K. B. Chandran. Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32(11):1471–1483, 2004.

    Article  PubMed  Google Scholar 

  7. Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19:067105, 2007.

    Article  Google Scholar 

  8. de Zélicourt, D., K. Pekkan, H. Kitajima, D. Frakes, and A. P. Yoganathan. Single-step stereolithography of complex anatomical models for optical flow measurements. J. Biomech. Eng. 127:204, 2005.

    Article  PubMed  Google Scholar 

  9. Ellis, J. T., T. M. Healy, A. A. Fontaine, R. Saxena, and A. P. Yoganathan. Velocity measurements and flow patterns within the hinge region of a medtronic parallel bileaflet mechanical valve with clear housing. J. Heart Valve Dis. 5(6):591–599, 1996.

    CAS  PubMed  Google Scholar 

  10. Feng, Z., M. Umezu, T. Fujimoto, T. Tsukahara, M. Nurishi, and D. Kawaguchi. In vitro hydrodynamic characteristics among three bileaflet valves in the mitral position. Artif. Organs 24(5):346–354, 2000.

    Article  CAS  PubMed  Google Scholar 

  11. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36(2):276–297, 2008.

    Article  PubMed  Google Scholar 

  12. Ge, L., H. L. Leo, F. Sotiropoulos, and A. P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: Cfd simulations and experiments. J. Biomech. Eng. 127:782, 2005.

    Article  PubMed  Google Scholar 

  13. Ge, L., and F. Sotiropoulos. A numerical method for solving the 3d unsteady incompressible navierstokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225(2):1782–1809, 2007.

    Article  PubMed  Google Scholar 

  14. Gilmanov, A., and F. Sotiropoulos. A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies. J. Comput. Phys. 207(2):457, 2005.

    Article  Google Scholar 

  15. Grigioni, M., C. Daniele, G. D’Avenio, and V. Barbaro. The influence of the leaflets curvature on the flow field in two bileaflet prosthetic heart valves. J. Biomech. 34(5):613–621, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Grigioni, M., C. Daniele, G. D’Avenio, and V. Barbaro. Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices. J. Biomech. 35(12):1613–1622, 2002.

    Article  PubMed  Google Scholar 

  17. Grigioni, M., C. Daniele, C. Del Gaudio, U. Morbiducci, A. Balducci, G. D’Avenio, and V. Barbaro. Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J. 51(3):176, 2005.

    Article  PubMed  Google Scholar 

  18. Grinberg, L., and G. E. Karniadakis. Outflow boundary conditions for arterial networks with multiple outlets. Ann. Biomed. Eng. 36(9):1496–1514, 2008.

    Article  PubMed  Google Scholar 

  19. Heart Disease and Stroke Statistics, 2007 Update. Technical report. American Heart Association, 2007.

  20. Huang, Z. J., C. L. Merkle, S. Abdallah, and J. M. Tarbell. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding. J. Biomech. 27(4):391–402, 1994.

    Article  CAS  PubMed  Google Scholar 

  21. Hunt, J. C. R., A. A. Wray, and P. Moin. Eddies, streams, and convergence zones in turbulent flows. In: Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program (SEE N89-2453818-34), pp. 193–208, 1988.

  22. Irons, B. M., and R. C. Tuck. A version of the aitken accelerator for computer iteration. Int. J. Numer. Methods Eng. 1(3):275–277, 1969.

    Article  Google Scholar 

  23. King, M. J., J. Corden, T. David, and J. Fisher. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J. Biomech. 29(5):609–618, 1996.

    Article  CAS  PubMed  Google Scholar 

  24. Kleine, P., M. Perthel, H. Nygaard, S. B. Hansen, P. K. Paulsen, C. Riis, and J. Laas. Medtronic hall versus st. jude medical mechanical aortic valve: downstream turbulences with respect to rotation in pigs. J. Heart Valve Dis. 7(5):548–555, 1998.

    CAS  PubMed  Google Scholar 

  25. CSF Lee and L. Talbot. A fluid-mechanical study of the closure of heart valves. J. Fluid Mech. 91(1):41–63, 1979.

    Article  Google Scholar 

  26. Liu, J. S., P. C. Lu, and S. H. Chu. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122(2):118–124, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the st. jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27(9):840–846, 2003.

    Article  PubMed  Google Scholar 

  28. Marshall, I., S. Zhao, P. Papathanasopoulou, P. Hoskins, and X. Y. Xu. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37(5):679–687, 2004.

    Article  PubMed  Google Scholar 

  29. Mok, D. P., W. A. Wall, and E. Ramm. Accelerated iterative substructuring schemes for instationary fluid–structure interaction. In: First MIT Conference on Computational Fluid and Solid Mechanics, pp. 1325–1328, 2001.

  30. Nyboe, C., J. A. Funder, M. H. Smerup, H. Nygaard, and J. M. Hasenkam. Turbulent stress measurements downstream of three bileaflet heart valve designs in pigs. Eur. J. Cardiothorac Surg. 29(6):1008–1013, 2006.

    Article  PubMed  Google Scholar 

  31. Nygaard, H., P. K. Paulsen, J. M. Hasenkam, E. M. Pedersen, and P. E. Rovsing. Turbulent stresses downstream of three mechanical aortic valve prostheses in human beings. J. Thorac. Cardiovasc. Surg. 107(2):438–446, 1994.

    CAS  PubMed  Google Scholar 

  32. Pekkan, K., D. Zlicourt, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, and A. P. Yoganathan. Physics-driven cfd modeling of complex anatomical cardiovascular flowsa tcpc case study. Ann. Biomed. Eng. 33(3):284–300, 2005.

    Article  PubMed  Google Scholar 

  33. Peskin, C. S. The fluid dynamics of heart valves: experimental, theoretical, and computational methods. Annu. Rev. Fluid Mech. 14(1):235–259, 1982.

    Article  Google Scholar 

  34. Scotten, L. N., and D. K. Walker. New laboratory technique measures projected dynamic area of prosthetic heart valves. J. Heart Valve Dis., 13(1):120–32, 2004.

    PubMed  Google Scholar 

  35. Sotiropoulos, F., and I. Borazjani. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47:245–256, 2009.

    Article  PubMed  Google Scholar 

  36. Steinman, D. A., J. S. Milner, C. J. Norley, S. P. Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroradiol. 24(4):559–566, 2003.

    PubMed  Google Scholar 

  37. Travis, B. R., H. L. Leo, P. A. Shah, D. H. Frakes, and A. P. Yoganathan. An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J. Biomech. Eng. 124(2):155–165, 2002.

    Article  PubMed  Google Scholar 

  38. Vorp, D. A., D. A. Steinman, and C. R. Ethier. Computational modeling of arterial biomechanics. Comput. Sci. Eng. 3(5):51–64, 2001.

    Article  Google Scholar 

  39. Yoganathan, A. P., Z. He, and S. C. Jones. Fluid mechanics of heart valves. Annu. Rev. Biomed. Eng. 6:331–362, 2004.

    Article  CAS  PubMed  Google Scholar 

  40. Yoganathan, A. P., Y. R. Woo, and H. W. Sung. Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses. J. Biomech. 19(6):433–442, 1986.

    Article  CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4