Allescher, H. D., K. Abraham-Fuchs, R. E. Dunkel, and M. Classen. Biomagnetic 3-dimensional spatial and temporal characterization of electrical activity of human stomach. Dig. Dis. Sci. 43(4):683–693, 1998.
Austin, T. M., L. Li, A. J. Pullan, and L. K. Cheng. Effects of gastrointestinal tissue structure on computed dipole vectors. Biomed. Eng. Online 6:39, 2007.
Bradshaw, L. A., S. H. Allos, J. P. Wikswo, and W. O. Richards. Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. Am. J. Physiol. Gastrointest. Liver Physiol. 272:1159–1167, 1997.
Bradshaw, L. A., L. K. Cheng, W. O. Richards, and A. J. Pullan. Surface current density mapping for identification of gastric slow wave propagation. IEEE Trans. Biomed. Eng. 56(8):2131–2139, 2009.
Bradshaw, L. A., A. Irimia, J. A. Sims, M. R. Gallucci, R. L. Palmer, and W. O. Richards. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave. Neurogastroenterol. Motil. 18(8):619–631, 2006.
Buist, M. L., L. K. Cheng, K. M. Sanders, and A. J. Pullan. Multiscale modelling of human gastric electric activity: can the electrogastrogram detect functional electrical uncoupling? Exp. Physiol. 91(2):383–390, 2006.
Chen, J. D., R. D. Richards, and R. W. McCallum. Identification of gastric contractions from the cutaneous electrogastrogram. Am. J. Gastroenterol. 89:79–85, 1994.
Chen, J., J. Vandewalle, W. Sansen, E. van Cutsem, G. Vantrappen, and J. Panssens. Observation of the propagation direction of human electrogastric activity from cutaneous recordings. Med. Biol. Eng. Comput. 27:538–542, 1995.
Chen, J. D. Z., X. Zou, X. Lin, S. Ouyang, and J. Liang. Detection of gastric slow wave propagation from the cutaneous electrogastrogram. Am. J. Physiol. Gastrointest. Liver Physiol. 277:424–430, 1999.
Cheng, L. K., M. L. Buist, and A. J. Pullan. Anatomically realistic torso model for studying the relative decay of gastric electrical and magnetic fields. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:3158–3161, 2006.
Cheng, L. K., M. L. Buist, W. O. Richards, L. A. Bradshaw, and A. J. Pullan. Noninvasive localization of gastric electrical activity. Int. J. Bioelectromagn. 7(1):1–4, 2005.
Cheng, L. K., M. L. Buist, R. Yassi, W. O. Richards, L. A. Bradshaw, and A. J. Pullan. A model of the electrical activity of the stomach: from cell to body surface. Conf. Proc. IEEE Eng. Med. Biol. Soc. 3:2761–2764, 2003.
Cheng, L. K., R. Komuro, T. M. Austin, M. L. Buist, and A. J. Pullan. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World J. Gastroenterol. 13(9):1378–1383, 2007.
Cheng, L. K., G. O’Grady, P. Du, J. E. Egbuji, J. A. Windsor, and A. J. Pullan. Gastrointestinal system. Wiley Interdisc. Reviews: Syst. Biol. Med. 1:1–15, 2009 (in press). doi:10.1002/wsbm.19
Cheng, L. K., G. O’Grady, P. Du, J. U. Egbuji, J. A. Windsor, and A. J. Pullan. Detailed measurements of gastric electrical activity and their implications on inverse solutions. Conf. Proc. IEEE Eng. Med. Biol. Soc. 1:1302–1305, 2009.
Cohen, D., and H. Hosaka. Part II: magnetic field produced by a current dipole. J. Electrocardiol. 9(4):409–417, 1976.
Farrugia, G. Interstitial cells of Cajal in health and disease. Neurogastroenterol. Motil. 20(Suppl 1):54–63, 2008.
Haberkorn, W., U. Steinhoff, M. Burghoff, O. Kosch, A. Morguet, and H. Koch. Pseudo current density maps of electrophysiological heart, nerve or brain function and their physical basis. Biomagn. Res. Technol. 4:5, 2006.
Hinder, R. A., and K. A. Kelly. Human gastric pacesetter potential. Site of origin, spread, and response to gastric transection and proximal gastric vagotomy. Am. J. Surg. 133(1):29–33, 1977.
Hosaka, H., and D. Cohen. Part IV: visual determination of generators of the magnetocardiogram. J. Electrocardiol. 9(4):426–432, 1976.
Irimia, A., W. O. Richards, and L. A. Bradshaw. Magnetogastrographic detection of gastric electrical response activity in humans. Phys. Med. Biol. 51:1347–1360, 2006.
Kandori, A., H. Oe, K. Miyashita, N. Date, N. Yamada, H. Naritomi, Y. Chiba, M. Murakami, T. Miyashita, and K. Tsukada. Visualisation method of spatial interictal discharges in temporal epilepsy patients using magneto-encephalogram. Med. Biol. Eng. Comput. 40(3):327–331, 2002.
Komuro, R., L. K. Cheng, and A. J. Pullan. Comparison and analysis of inter-subject variability of simulated magnetic activity generated from gastric electrical activity. Ann. Biomed. Eng. 36(6):1049–1059, 2008.
Lammers, W. J., A. el-Kays, G. W. Manefield, K. Arafat, and T. Y. el-Sharkawy. Disturbances in the propagation of the slow wave during acute local ischaemia in the feline small intestine. Eur. J. Gastroenterol. Hepatol. 9(4):381–388, 1997.
Lammers, W. J., L. Ver Donck, B. Stephen, D. Smets, and J. A. Schuurkes. Origin and propagation of the slow wave in the canine stomach: the outlines of a gastric conduction system. Am. J. Physiol. Gastrointest. Liver Physiol. 296(6):G1200–G1210, 2009.
Mintchev, M. P., Y. J. Kingma, and K. L. Bowes. Accuracy of cutaneous recordings of gastrical activity. Gastroenterology 104:1273–1280, 1993.
Pullan, A., L. Cheng, R. Yassi, and M. Buist. Modelling gastrointestinal bioelectric activity. Prog. Biophys. Mol. Biol. 85(2–3):523–550, 2004.
Richards, W. O., C. L. Garrard, S. H. Allos, L. A. Bradshaw, D. J. Staton, and J. P. Wikswo, Jr. Noninvasive diagnosis of mesenteric ischemia using a SQUID magnetometer. Ann. Surg. 221(6):696–705, 1995.
Rose, D. F., E. Ducla-Soares, and S. Sato. Improved accuracy of MEG localization in the temporal region with inclusion of volume current effects. Brain Topogr. 1(3):175–181, 1989.
Sarvas, J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32(1):11–22, 1987.
Sato, M., Y. Terado, T. Mitsui, T. Miyashita, A. Kandori, and K. Tsukada. Visualization of atrial excitation by magnetocardiogram. Int. J. Cardiovasc. Imaging 37:123–127, 2002.
Spitzer, V., M. J. Ackerman, A. L. Scherzinger, and D. Whitlock. The visible human male: a technical report. J. Am. Med. Inform. Assoc. 3(2):118–130, 1996.
Turnbull, G. K., S. P. Ritcey, G. Stroink, B. Brandts, and P. van Leeuwen. Spatial and temporal variations in the magnetic fields produced by human gastrointestinal activity. Med. Biol. Eng. Comput. 37:549–554, 1999.
Vittal, H., G. Farrugia, G. Gomez, and P. J. Pasricha. Mechanisms of disease: the pathological basis of gastroparesis—a review of experimental and clinical studies. Nat. Clin. Pract. Gastroenterol. Hepatol. 4:336–346, 2007.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4