A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-009-9802-2 below:

Species-Specific Pulmonary Arterial Asymmetry Determines Species Differences in Regional Pulmonary Perfusion

References
  1. Brudin, L. H., C. G. Rhodes, S. O. Valind, T. Jones, and J. M. B. Hughes. Interrelationships between regional blood flow, blood volume, and ventilation in supine humans. J. Appl. Physiol. 76:1205–1210, 1994.

    CAS  PubMed  Google Scholar 

  2. Burrowes, K. S., P. J. Hunter, and M. H. Tawhai. Anatomically-based finite element models of the human pulmonary arterial and venous trees including supernumerary vessels. J. Appl. Physiol. 99:731–738, 2005.

    Article  PubMed  Google Scholar 

  3. Burrowes, K. S., P. J. Hunter, and M. H. Tawhai. Investigation of the relative effects of vascular branching structure and gravity on pulmonary arterial blood flow heterogeneity via an image-based computational model. Acad. Radiol. 12:1464–1474, 2005.

    Article  PubMed  Google Scholar 

  4. Burrowes, K. S., and M. H. Tawhai. Computational predictions of pulmonary blood flow gradients: gravity versus structure. Respir. Physiol. 154:515–523, 2006.

    Google Scholar 

  5. Caruthers, S., and T. Harris. Effects of pulmonary blood flow on the fractal nature of flow heterogeneity in sheep lungs. J. Appl. Physiol. 77:1474–1479, 1994.

    CAS  PubMed  Google Scholar 

  6. Chon, D., K. C. Beck, R. L. Larsen, H. Shikata, and E. A. Hoffman. Regional pulmonary blood flow in dogs by 4D-X-ray CT. J. Appl. Physiol. 101:1451–1465, 2006.

    Article  PubMed  Google Scholar 

  7. Dakin, J. H., T. W. Evans, D. M. Hansell, and E. A. Hoffman. Regional pulmonary blood flow in humans and dogs by 4D computed tomography. Acad. Radiol. 15:844–852, 2008.

    Article  PubMed  Google Scholar 

  8. Dawson, C. A., G. S. Krenz, K. L. Karau, S. T. Haworth, C. C. Hanger, and J. H. Linehan. Structure–function relationships in the pulmonary arterial tree. J. Appl. Physiol. 86:569–583, 1999.

    CAS  PubMed  Google Scholar 

  9. Elliot, F. M., and L. Reid. Some new facts about the pulmonary artery and its branching pattern. Clin. Radiol. 16:193–198, 1965.

    Article  Google Scholar 

  10. Fernandez, J. W., P. Mithraratne, S. F. Thrupp, M. H. Tawhai, and P. J. Hunter. Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2:139–155, 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Galvin, I., G. B. Drummond, and M. Nirmalan. Distribution of blood flow and ventilation in the lung: gravity is not the only factor. Br. J. Anaesth. 98:420–428, 2007.

    Article  CAS  PubMed  Google Scholar 

  12. Glenny, R. W., S. Bernard, H. T. Robertson, and M. P. Hlastala. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J. Appl. Physiol. 86:623–632, 1999.

    CAS  PubMed  Google Scholar 

  13. Glenny, R. W., S. L. Bernard, and H. T. Robertson. Pulmonary blood remains fractal down to the level of gas exchange. J. Appl. Physiol. 89:742–748, 2000.

    CAS  PubMed  Google Scholar 

  14. Glenny, R. W., W. J. E. Lamm, R. K. Albert, and H. T. Robertson. Gravity is a minor determinant of pulmonary blood flow distribution. J. Appl. Physiol. 71:620–629, 1991.

    CAS  PubMed  Google Scholar 

  15. Glenny, R. W., W. J. E. Lamm, S. L. Bernard, D. An, M. Chornuk, S. L. Pool, W. W. Wagner, Jr., M. P. Hlastala, and H. T. Robertson. Physiology of a microgravity environment, selected contribution: redistribution of pulmonary perfusion during weightlessness and increased gravity. J. Appl. Physiol. 89:1239–1248, 2000.

    CAS  PubMed  Google Scholar 

  16. Glenny, R. W., and T. J. Roberts. Fractal properties of pulmonary blood flow: characterization of spatial heterogeneity. J. Appl. Physiol. 69:532–545, 1990.

    CAS  PubMed  Google Scholar 

  17. Glenny, R. W., and H. T. Robertson. Fractal modeling of pulmonary blood flow heterogeneity. J. Appl. Physiol. 70:1024–1030, 1991.

    CAS  PubMed  Google Scholar 

  18. Haefeli-Bleuer, B., and E. R. Weibel. Morphometry of the human pulmonary acinus. Anat. Rec. 220:401–414, 1988.

    Article  CAS  PubMed  Google Scholar 

  19. Hlastala, M. P., and R. W. Glenny. Vascular structure determines pulmonary blood flow distribution. News. Phsyiol. Sci. 14:182–186, 1999.

    CAS  Google Scholar 

  20. Hoffman, E. A., A. V. Clough, G. E. Christensen, C. L. Lin, G. McLennan, J. M. Reinhardt, B. A. Simon, M. Sonka, M. H. Tawhai, E. J. van Beek, and G. Wang. The comprehensive imaging-based analysis of the lung: a forum for team science (1). Acad. Radiol. 11:1370–1380, 2004.

    Article  PubMed  Google Scholar 

  21. Hogg, J. C., B. A. Martin, S. Lee, and T. McLean. Regional differences in erythrocyte transit in normal lungs. J. Appl. Physiol. 59:1266–1271, 1985.

    CAS  PubMed  Google Scholar 

  22. Hopkins, S. R., A. C. Henderson, D. L. Levin, K. Yamada, T. Arai, R. B. Buxton, and G. K. Prisk. Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J. Appl. Physiol. 103:240–248, 2007.

    Article  PubMed  Google Scholar 

  23. Horsfield, K. Morphometry of the small pulmonary arteries in man. Circ. Res. 42:537–593, 1978.

    Google Scholar 

  24. Horsfield, K. Morphometry of airways. In: Handbook of Physiology: The Respiratory System III, edited by P. T. Macklem and J. Mead. Bethesda, MD: American Physiological Society, 1986, pp. 75–87

    Google Scholar 

  25. Horsfield, K., and M. J. Woldenberg. Diameters and cross-sectional areas of branches in the human pulmonary arterial tree. Anat. Rec. 223:245–251, 1989.

    Article  CAS  PubMed  Google Scholar 

  26. Huang, W., R. T. Yen, M. McLaurine, and G. Bledsoe. Morphometry of the human pulmonary vasculature. J. Appl. Physiol. 81:2123–2133, 1996.

    CAS  PubMed  Google Scholar 

  27. Hughes, J. M. B. Invited editorial on pulmonary blood flow distribution in exercising and in resting horses. J. Appl. Physiol. 81:1049–1050, 1996.

    CAS  PubMed  Google Scholar 

  28. Hughes, J. M. B., J. B. Glazier, J. E. Maloney, and J. B. West. Effect of lung volume on the distribution of pulmonary blood flow in man. Respir. Physiol. 4:58–72, 1968.

    Article  CAS  PubMed  Google Scholar 

  29. Hughes, M., and J. B. West. Point: gravity is the major factor determining the distribution of blood flow in the human lung. J. Appl. Physiol. 104:1531–1533, 2008.

    Article  PubMed  Google Scholar 

  30. Krenz, G. S., and C. A. Dawson. Flow and pressure distributions in vascular networks consisting of distensible vessels. Am. J. Respir. Crit. Care Med. 284:H2192–H2203, 2003.

    CAS  Google Scholar 

  31. Krenz, G. S., J. H. Linehan, and C. A. Dawson. A fractal continuum model of the pulmonary arterial tree. J. Appl. Physiol. 72(6):2225–2237, 1992.

    CAS  PubMed  Google Scholar 

  32. Levin, D. L., R. B. Buxton, J. P. Spiess, T. Arai, J. Balouch, and S. R. Hopkins. Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance imaging. J. Appl. Physiol. 102:2064–2070, 2007.

    Article  PubMed  Google Scholar 

  33. Musch, G., J. D. H. Layfield, R. S. Harris, M. F. V. Melo, T. Winkler, R. J. Callahan, A. J. Fischman, and J. G. Venegas. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone humans. J. Appl. Physiol. 93:1841–1851, 2002.

    PubMed  Google Scholar 

  34. Parker, J. C., C. B. Cave, J. L. Ardell, C. R. Hamm, and S. G. Williams. Vascular tree structure affects lung blood flow heterogeneity simulated in three dimensions. J. Appl. Physiol. 83:1370–1382, 1997.

    CAS  PubMed  Google Scholar 

  35. Petersson, J., M. Rohdin, A. Sanchez-Crespo, S. Nyren, H. Jacobsson, S. A. Larsson, S. G. E. Lindahl, D. Linnarsson, B. Neradilek, N. L. Polissar, R. W. Glenny, and M. Mure. Posture primarily affects lung tissue distribution with minor effect on blood flow and ventilation. Respir. Physiol. 156:293–303, 2007.

    Google Scholar 

  36. Pries, A. R., T. W. Secomb, and P. Gaehtgens. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32:654–667, 1996.

    CAS  PubMed  Google Scholar 

  37. Prisk, G. K., K. A. Yamada, C. Henderson, T. J. Arai, D. L. Levin, R. B. Buxton, and S. R. Hopkins. Pulmonary perfusion in the prone and supine postures in normal human lung. J. Appl. Physiol. 103:883–894, 2007.

    Article  PubMed  Google Scholar 

  38. Tawhai, M. H., K. S. Burrowes, and E. A. Hoffman. Computational models of structure–function relationships in the pulmonary circulation and their validation. Exp. Physiol. 91:285–293, 2006.

    Article  PubMed  Google Scholar 

  39. Tawhai, M. H., P. J. Hunter, J. Tschirren, J. M. Reinhardt, G. McLennan, and E. A. Hoffman. CT-based geometry analysis and finite element models of the human and ovine bronchial tree. J. Appl. Physiol. 97:2310–2321, 2004.

    Article  PubMed  Google Scholar 

  40. Treppo, S., S. M. Mijailovich, and J. G. Venegas. Contributions of pulmonary perfusion and ventilation to heterogeneity in V(A)/Q measured by PET. J. Appl. Physiol. 82:1163–1176, 1997.

    CAS  PubMed  Google Scholar 

  41. Walther, S. M., K. B. Domino, R. W. Glenny, and M. P. Hlastala. Pulmonary blood flow distribution in sheep: effects of anesthesia, mechanical ventilation, and change in posture. Anesthesiology 87:335–342, 1997.

    Article  CAS  PubMed  Google Scholar 

  42. Walther, S. M., M. J. Johansson, T. Flatebø, A. Nicolaysen, and G. Nicolaysen. Marked differences between prone and supine sheep in effect of PEEP on perfusion distribution in zone II lung. J. Appl. Physiol. 99:909–914, 2005.

    Article  PubMed  Google Scholar 

  43. West, J. B. Respiratory Physiology—The Essentials. USA: Williams and Wilkins, 1995.

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4