A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-009-9737-7 below:

Spatial Filtering Improves EMG Classification Accuracy Following Targeted Muscle Reinnervation

Abstract

The combination of targeted muscle reinnervation (TMR) and pattern classification of electromyography (EMG) has shown great promise for multifunctional myoelectric prosthesis control. In this study, we hypothesized that surface EMG recordings with high spatial resolution over reinnervated muscles could capture focal muscle activity and improve the classification accuracy of identifying intended movements. To test this hypothesis, TMR subjects with transhumeral or shoulder disarticulation amputations were recruited. Spatial filters such as single differential filters, double differential filters, and various two-dimensional, high-order spatial filters were used, and the classification accuracies for fifteen different movements were calculated. Compared with monopolar recordings, spatially localized EMG signals produced increased accuracy in identifying the TMR patients’ movement intents, especially for hand movements. When the number of EMG signals was constrained to 12, the double differential filters gave 5–15% higher classification accuracies than the filters with lower spatial resolution, but resulted in comparable accuracies to the filters with higher spatial resolution. These results suggest that double differential EMG recordings may further improve the TMR-based neural interface for robust, multifunctional control of artificial arms.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Basmajian, J. V., and C. J. De Luca. Muscles Alive : Their Functions Revealed by Electromyography. Baltimore: Williams & Wilkins, pp. xii, 561, 1985.

  2. Disselhorst-Klug, C., J. Silny, G. Rau. Improvement of spatial resolution in surface-EMG: a theoretical and experimental comparison of different spatial filters. IEEE Trans Biomed Eng 44:567-74, 1997. doi:10.1109/10.594897.

    Article  PubMed  CAS  Google Scholar 

  3. Duda, R. O., P. E. Hart, and D. G. Stork. Pattern Classification. New York: Wiley, pp. xx, 654, 2001.

  4. Englehart, K., B. Hudgins. A robust, real-time control scheme for multifunction myoelectric control. IEEE Trans Biomed Eng 50:848-54, 2003. doi:10.1109/TBME.2003.813539.

    Article  PubMed  Google Scholar 

  5. Englehart, K., B. Hudgins, P. A. Parker, M. Stevenson. Classification of the myoelectric signal using time-frequency based representations. Med Eng Phys 21:431-8, 1999. doi:10.1016/S1350-4533(99)00066-1.

    Article  PubMed  CAS  Google Scholar 

  6. Farina, D., C. Cescon. Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Trans Biomed Eng 48:1326-34, 2001. doi:10.1109/10.959328.

    Article  PubMed  CAS  Google Scholar 

  7. Farrell, T. R., R. F. Weir. A comparison of the effects of electrode implantation and targeting on pattern classification accuracy for prosthesis control. IEEE Trans Biomed Eng 55:2198-211, 2008. doi:10.1109/TBME.2008.923917.

    Article  PubMed  Google Scholar 

  8. Graupe, D., J. Salahi, K. H. Kohn. Multifunctional prosthesis and orthosis control via microcomputer identification of temporal pattern differences in single-site myoelectric signals. J Biomed Eng 4:17-22, 1982. doi:10.1016/0141-5425(82)90021-8.

    Article  PubMed  CAS  Google Scholar 

  9. Hargrove, L. J., K. Englehart, B. Hudgins. A comparison of surface and intramuscular myoelectric signal classification. IEEE Trans Biomed Eng 54:847-53, 2007. doi:10.1109/TBME.2006.889192.

    Article  PubMed  Google Scholar 

  10. Hijjawi, J. B., T. A. Kuiken, R. D. Lipschutz, L. A. Miller, K. A. Stubblefield, G. A. Dumanian. Improved myoelectric prosthesis control accomplished using multiple nerve transfers. Plast Reconstr Surg 118:1573-8, 2006. doi:10.1097/01.prs.0000242487.62487.fb.

    Article  PubMed  CAS  Google Scholar 

  11. Hoffer, J. A., G. E. Loeb. Implantable electrical and mechanical interfaces with nerve and muscle. Ann Biomed Eng 8:351-60, 1980. doi:10.1007/BF02363438.

    Article  PubMed  CAS  Google Scholar 

  12. Huang, H., T. Kuiken, R. D. Lipschutz. A strategy for identifying locomotion modes using surface electromyography. IEEE Trans Biomed Eng 56:65-73, 2009. doi:10.1109/TBME.2008.2003293.

    Article  PubMed  Google Scholar 

  13. Huang, H., P. Zhou, G. Li, T. A. Kuiken. An analysis of EMG electrode configuration for targeted muscle reinnervation based neural machine interface. IEEE Trans Neural Syst Rehabil Eng 16:37-45, 2008. doi:10.1109/TNSRE.2007.910282.

    Article  PubMed  Google Scholar 

  14. Hudgins, B., P. Parker, R. N. Scott. A new strategy for multifunction myoelectric control. IEEE Trans Biomed Eng 40:82-94, 1993. doi:10.1109/10.204774.

    Article  PubMed  CAS  Google Scholar 

  15. Kuiken, T. A., D. S. Childress, W. Z. Rymer. The hyper-reinnervation of rat skeletal muscle. Brain Res 676:113-23, 1995. doi:10.1016/0006-8993(95)00102-V.

    Article  PubMed  CAS  Google Scholar 

  16. Kuiken, T. A., G. A. Dumanian, R. D. Lipschutz, L. A. Miller, K. A. Stubblefield. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 28:245-53, 2004.

    PubMed  CAS  Google Scholar 

  17. Kuiken, T. A., L. A. Miller, R. D. Lipschutz, B. A. Lock, K. Stubblefield, P. D. Marasco, P. Zhou, G. A. Dumanian. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369:371-80, 2007. doi:10.1016/S0140-6736(07)60193-7.

    Article  PubMed  Google Scholar 

  18. Parker, P., K. Englehart, B. Hudgins. Myoelectric signal processing for control of powered limb prostheses. J Electromyogr Kinesiol 16:541-8, 2006. doi:10.1016/j.jelekin.2006.08.006.

    Article  PubMed  CAS  Google Scholar 

  19. van Vugt, J. P., J. G. van Dijk. A convenient method to reduce crosstalk in surface EMG. Cobb Award-winning article, 2001. Clin Neurophysiol 112:583-92, 2001. doi:10.1016/S1388-2457(01)00482-5.

    Article  PubMed  Google Scholar 

  20. Williams, T. W., 3rd. Practical methods for controlling powered upper-extremity prostheses. Assist Technol 2:3-18, 1990.

    PubMed  Google Scholar 

  21. Zhou, P., M. M. Lowery, K. B. Englehart, H. Huang, G. Li, L. Hargrove, J. P. Dewald, T. A. Kuiken. Decoding a new neural machine interface for control of artificial limbs. J Neurophysiol 98:2974-82, 2007. doi:10.1152/jn.00178.2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The EMG signal classification code used in this study was provided by Professor Kevin B. Englehart, PhD, PE, of the Institute of Biomedical Engineering, University of New Brunswick, Canada. We thank Aimee Schultz, M.S. for editing the manuscript. This work was supported by the National Institute on Disability and Rehabilitation Research (Grant # H133F060029 & H133F080006), the NIH National Institute of Child and Human Development (Grants # R01 HD043137-01, #R01 HD044798, and # NO1-HD-5-3402), and the Defense Advanced Research Projects.

Author information Author notes
  1. Guanglin Li

    Present address: Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, P.R. China

Authors and Affiliations
  1. Neural Engineering Center for Artificial Limbs, Rehabilitation Institute of Chicago, 345 E. Superior Street, Suite 1406, Chicago, IL, 60611, USA

    He Huang, Ping Zhou, Guanglin Li & Todd Kuiken

  2. Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA

    He Huang

  3. Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA

    Ping Zhou, Guanglin Li & Todd Kuiken

  4. Institute of Biomedical Engineering, Northwestern University, Chicago, IL, USA

    Todd Kuiken

Authors
  1. He Huang
  2. Ping Zhou
  3. Guanglin Li
  4. Todd Kuiken
Corresponding author

Correspondence to Ping Zhou.

About this article Cite this article

Huang, H., Zhou, P., Li, G. et al. Spatial Filtering Improves EMG Classification Accuracy Following Targeted Muscle Reinnervation. Ann Biomed Eng 37, 1849–1857 (2009). https://doi.org/10.1007/s10439-009-9737-7

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4