A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-009-9718-x below:

Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications

Abstract

A next generation fiber-optic microsensor based on the extrinsic Fabry–Perot interferometric (EFPI) technique has been developed for pressure measurements. The basic physics governing the operation of these sensors makes them relatively tolerant or immune to the effects of high-temperature, high-EMI, and highly-corrosive environments. This pressure microsensor represents a significant improvement in size and performance over previous generation sensors. To achieve the desired overall size and sensitivity, numerical modeling of diaphragm deflection was incorporated in the design, with the desired dimensions and calculated material properties. With an outer diameter of approximately 250 μm, a dynamic operating range of over 250 mmHg, and a sampling frequency of 960 Hz, this sensor is ideal for the minimally invasive measurement of physiologic pressures and incorporation in catheter-based instrumentation. Nine individual sensors were calibrated and characterized by comparing the output to a U.S. National Institute of Standards and Technology (NIST) Traceable reference pressure over the range of 0–250 mmHg. The microsensor performance demonstrated accuracy of better than 2% full-scale output, and repeatability, and hysteresis of better than 1% full-scale output. Additionally, fatigue effects on five additional sensors were 0.25% full-scale output after over 10,000 pressure cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Chen, S., C. Pislaru, R. R. Kinnick, D. A. Morrow, K. R. Kaufman, J. F. Greenleaf (2005). Evaluating the dynamic performance of a fibre optic pressure microsensor. Physiol. Meas. 26(4): N13-9. doi:10.1088/0967-3334/26/4/N02.

    Article  PubMed  Google Scholar 

  2. Cottler, P. S., D. C. Blevins, J. S. Averett, T. A. Wavering, D. A. Morrow, A. Y. Shin, and K. R. Kaufman (2007). Miniature optical fiber pressure microsensors for in vivo measurement of intramuscular pressure. Proc. of SPIE 6433:643304-1–643304-10

    Google Scholar 

  3. Cottler, P. S., T. C. Skalak (2001). Development of a clinically useful mechanical leech device that promotes flap survival in an animal model of venous-congested skin flaps. Ann. Plast. Surg. 47(2): 138-47. doi:10.1097/00000637-200108000-00006.

    Article  PubMed  CAS  Google Scholar 

  4. Crenshaw, A. G., J. R. Styf, S. J. Mubarak, A. R. Hargens (1990). A new “transducer-tipped” fiber optic catheter for measuring intramuscular pressures. J. Orthop. Res. 8(3): 464-8. doi:10.1002/jor.1100080318.

    Article  PubMed  CAS  Google Scholar 

  5. Davis, J., K.R. Kaufman, R.L. Lieber (2003). Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. J. Biomech. 36: 505-512. doi:10.1016/S0021-9290(02)00430-X.

    Article  PubMed  Google Scholar 

  6. DiGiovanni, M. (1982) Flat and Corrugated Diaphragm Design Handbook (Mechanical Engineering). New York: Marcel Dekker

    Google Scholar 

  7. Duncan, R. G., M. T. Raum (2006). Characterization of a fiber-optic shape and position sensor. Proc. SPIE 6167:616704-1–616704-11

    Google Scholar 

  8. Gelabert-Gonzalez, M., V. Ginesta-Galan, R. Sernamito-Garcia, A. G. Allut, J. Bandin-Dieguez, R. M. Rumbo (2006). The Camino intracranial pressure device in clinical practice. Assessment in a 1000 cases. Acta Neurochir (Wien) 148(4): 435-41. doi: 10.1007/s00701-005-0683-3.

    Article  CAS  Google Scholar 

  9. Hollingsworth-Fridlund, P., H. Vos, E. K. Daily (1988). Use of fiber-optic pressure transducer for intracranial pressure measurements: a preliminary report. Heart Lung 17(2): 111-20.

    PubMed  CAS  Google Scholar 

  10. Kaufman, K. R., T.A. Wavering, D. Morrow, J. Davis, J.L. Lieber (2003). Performance characteristics of a pressure sensor. J. Biomech. 36: 283-287. doi:10.1016/S0021-9290(02)00321-4.

    Article  PubMed  Google Scholar 

  11. Kocincova, A. S., S. M. Borisov, C. Krause, O. S. Wolfbeis (2007). Fiber-optic microsensors for simultaneous sensing of oxygen and pH, and of oxygen and temperature. Anal. Chem. 79(22): 8486-93. doi:10.1021/ac070514h.

    Article  PubMed  CAS  Google Scholar 

  12. Leung, A., P.M. Shankar, R. Mutharasan (2007). A review of fiber-optic biosensors. Sens. Actuators B Chem 125: 688-703. doi:10.1016/j.snb.2007.03.010.

    Article  Google Scholar 

  13. Martinez-Manas, R. M., D. Santamarta, J. M. de Campos, E. Ferrer (2000). Camino intracranial pressure monitor: prospective study of accuracy and complications. J. Neurol. Neurosurg. Psychaitry 69(1): 82-86. doi:10.1136/jnnp.69.1.82.

    Article  CAS  Google Scholar 

  14. Morgalla, M. H., H. Mettenleiter, M. Bitzer, R. Fretschner, E. H. Grote (1999). ICP measurement control: laboratory test of 7 types of intracranial pressure transducers. J. Med. Eng. Technol. 23(4): 144-51. doi:10.1080/030919099294195.

    Article  PubMed  CAS  Google Scholar 

  15. Munch, E., R. Weigel, P. Schmiedek, and L. Schurer. The Camino intracranial pressure device in clinical practice: reliability, handling characteristics and complications. Acta Neurochir (Wien) 140(11):1113–1119, 1998; discussion 1119–1120. doi:10.1007/s007010050224.

    Google Scholar 

  16. Murphy, K. A., M.F. Gunther, A.M. Vengsaskar, R.O. Claus (1991). Quadrature phase-shifted, extrinsic Fabry-Perot fiber sensors. Opt. Lett. 16(4): 273. doi:10.1364/OL.16.000273.

    Article  Google Scholar 

  17. Piper, I., A. Barnes, D. Smith, and L. Dunn. The Camino intracranial pressure sensor: is it optimal technology? An internal audit with a review of current intracranial pressure monitoring technologies. Neurosurgery 49(5):1158–1164, 2001; discussion 1164–1165. doi:10.1097/00006123-200111000-00026.

    Google Scholar 

  18. Ravi, R., R.J. Morgan (2003). Intracranial pressure monitoring. Curr. Anaesth. Crit. Care 14(5–6):229–235. doi:10.1016/j.cacc.2003.09.003.

    Google Scholar 

  19. Schurer, L., E. Munch, A. Piepgras, R. Weigel, L. Schilling, P. Schmiedek (1997). Assessment of the CAMINO intracranial pressure device in clinical practice. Acta. Neurochir. Suppl. 70: 296–298.

    PubMed  CAS  Google Scholar 

  20. van den Brink, W. A., I.K. Haitsma, C.J.J. Avezaat, (1997). Evaluation of the Camino fiberoptic ICP transducer. Clin. Neurol. Neurosurg. 99(Suppl 1): 68. doi:10.1016/S0303-8467(97)81571-5.

    Google Scholar 

  21. Voskerician, G., M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, R. Langer (2003). Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24(11): 1959-67. doi:10.1016/S0142-9612(02)00565-3.

    Article  PubMed  CAS  Google Scholar 

  22. Wavering, T., S. Meller, M. Evans, C. Pennington, M. Jones, and K. Murphy (2000). Interferometric optical fiber microcantilever beam biosensor. Proc. SPIE 4200:10–16.

    Article  CAS  Google Scholar 

  23. Winters, T. M., G. S. Sepulveda, P. S. Cottler, K. R. Kaufman, R. L. Lieber, and S. R. Ward. Correlation between isometric force and intramuscular pressure in rabbit tibialis anterior muscle with an intact anterior compartment. Muscle Nerve (in press).

  24. Wolfbeis, O. S. (2008). Fiber-optic chemical sensors and biosensors. Anal. Chem. 80(12): 4269-83. doi:10.1021/ac800473b.

    Article  PubMed  CAS  Google Scholar 

  25. Yang, C., Z. Chunfeng, L. Wold, K.R. Kaufman (2003). Biocompatibility of a physiological pressure sensor. Biosens. Bioelectron. 19: 51-58. doi:10.1016/S0956-5663(03)00131-3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dan Blevins for technical assistance in sensor fabrication and David Dausch from RTI International for assistance with the diaphragm design and photoetching processes. This work was supported by the National Center for Medical Rehabilitation Research (NCMRR) within the National Institute of Child Health and Human Development (NICHD) RO1 HD31476, “Microsensor for Intramuscular Pressure Measurement,” as well as the National Eye Institute (NEI) 5R44EY013902-03 “Miniature Non-Invasive IOP Measurement Device.” Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NCMRR, NEI, or NIH.

Author information Authors and Affiliations
  1. Luna Innovations, Inc., 706 Forest Street, Suite A, Charlottesville, VA, 22903, USA

    Patrick S. Cottler

  2. Biomechanics Laboratory, Mayo Clinic, Rochester, MN, 55906, USA

    Whitney R. Karpen, Duane A. Morrow & Kenton R. Kaufman

Authors
  1. Patrick S. Cottler
  2. Whitney R. Karpen
  3. Duane A. Morrow
  4. Kenton R. Kaufman
Corresponding author

Correspondence to Patrick S. Cottler.

About this article Cite this article

Cottler, P.S., Karpen, W.R., Morrow, D.A. et al. Performance Characteristics of a New Generation Pressure Microsensor for Physiologic Applications. Ann Biomed Eng 37, 1638–1645 (2009). https://doi.org/10.1007/s10439-009-9718-x

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4