Musculoskeletal models use wrapping objects to constrain muscle paths from passing through anatomical obstacles; however, the selection of wrapping object parameters is typically a manual, iterative, and time-consuming process. The purpose of this study was to use a data-driven optimization algorithm to determine wrapping object parameters. Wrapping parameters were determined using simulated annealing for two cases: (1) modeling the triceps at the elbow using a cylindrical wrapping object, and (2) modeling the middle deltoid using a spherical wrapping object. It was found that an optimization algorithm could be used to determine wrapping object parameters which produced moment arms that were similar to experimental data. The greatest benefit of this method is the efficiency at which model parameters were determined, thus eliminating much of the time required to manually refine the wrapping objects. Model development could be further improved by extending this method to other model parameters and combining various optimization techniques.
This is a preview of subscription content, log in via an institution to check access.
Access this article Subscribe and saveSpringer+ Basic
€34.99 /Month
Price includes VAT (Germany)
Instant access to the full article PDF.
Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. ReferencesAckland, D. C., P. Pak, M. Richardson, and M. G. Pandy. Moment arms of the muscles crossing the anatomical shoulder. J. Anat. 213(4):383-390, 2008. doi:10.1111/j.1469-7580.2008.00965.x.
An, K. N., F. C. Hui, B. F. Morrey, R. L. Linscheid, and E. Y. Chao. Muscles across the elbow joint: A biomechanical analysis. J. Biomech. 14(10):659-669, 1979. doi:10.1016/0021-9290(81)90048-8.
Delp, S. L., and J. P. Loan. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25(1):21-34, 1995. doi:10.1016/0010-4825(95)98882-E.
Ettema, G. J. C., G. Styles, and V. Kippers. The moment arms of 23 muscle segments of the upper limb with varying elbow and forearm positions: Implications for motor control. Hum. Movement Sci. 17(2):201-220, 1998. doi:10.1016/S0167-9457(97)00030-4.
Garner, B. A., and M. G. Pandy. The obstacle-set method for representing muscle paths in musculoskeletal models. Comput. Meth. Biomech. Biomed. Eng. 3(1):1-30, 2000. doi:10.1080/10255840008915251.
Gerbeaux, M., E. Turpin, and G. Lensel-Corbeil. Musculo-articular modelling of the triceps brachii. J. Biomech. 29(2):171-180, 1996. doi:10.1016/0021-9290(95)00032-1.
Holzbaur, K. R. S., W. M. Murray, and S. L. Delp. A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6):829-840, 2005. doi:10.1007/s10439-005-3320-7.
Inman, V. T., M. Saunders, and L. C. Abbott. Observations of the functional shoulder joint. J. Bone Joint Surg. Am. 26(1):1-30, 1944.
Kirkpatrick, S., C. D. Gelatt, and M. P. Veechi. Optimization by simulated annealing. Science 220(4598):671-680, 1983. doi:10.1126/science.220.4598.671.
Kuechle, D. K., S. R. Newman, E. Itoi, B. F. Morrey, and K. N. An. Shoulder muscle moment arms during horizontal flexion and elevation. J. Shoulder Elb. Surg. 6(5):429-439, 1997. doi:10.1016/S1058-2746(97)70049-1.
Liu, J., R. E. Hughes, W. P. Smutz, G. Neibur, and K. N. An. Roles of the deltoid and rotator cuff muscles in shoulder elevation. Clin. Biomech. 12(1):32-38, 1997. doi:10.1016/S0268-0033(96)00047-2.
Murray, W. M., T. S. Buchanan, and S. L. Delp. Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions. J. Biomech. 35(1):19-26, 2002. doi:10.1016/S0021-9290(01)00173-7.
Petitti, D. B. Meta-Analysis, Decision Analysis, and Cost-Effectiveness Analysis: Methods for Quantitative Synthesis in Medicine. New York: Oxford University Press, pp. 120-123, 2000.
Pigeon, P., L. Yahia, and A. Feldman. Moment arms and lengths of human upper limb muscles as functions of joint angles. J. Biomech. 29(10):1365-1370, 1996. doi:10.1016/0021-9290(96)00031-0.
Santos, V. J., and F. J. Valero-Cuevas. A Bayesian approach to biomechanical modeling to optimize over large parameter spaces while considering anatomic variability. In: Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, CA, 2004, pp. 4626–4629.
Sutton, A. J., K. R. Abrams, D. R. Jones, T. A. Sheldon, and F. Song. Methods for Meta-Analysis in Medical Research. New York: Wiley, 2000.
Valero-Cuevas, F. J., V. V. Anand, A. Saxena, and H. Lipson. Beyond parameters estimation: Extending biomechanical modeling by the explicit exploration of model toplogy. IEEE T. Biomed. Eng. 54(11):1951-1964, 2007. doi:10.1109/TBME.2007.906494.
Vandekerckhove, J. MATLAB Central File Exchange: general simulated annealing algorithm. Available at http://www.mathworks.de/matlabcentral/fileexchange/10548, 2008.
van der Helm, F. C. T. The shoulder mechanism: a dynamic approach. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands, 1991.
Vasavada, A. N., R. A. Lasher, T. E. Meyer, and D. C. Lin. Defining and evaluating wrapping surfaces for MRI-based spinal muscle paths. J. Biomech. 41(7):1450-1457, 2008. doi:10.1016/j.jbiomech.2008.02.027.
The authors would like to thank Dr. Barbara McCreadie, of Grizzly Moose LLC, for her insightful review of this manuscript, and Nick Flieg for his assistance in coding the shoulder model. Funding was provided to Grizzly Moose LLC, with subcontract to the University of Michigan, by grant R41HD53886 from the National Institutes of Health. Dr. Hughes is an unpaid scientific advisor to Grizzly Moose LLC and does not have equity in the company.
Author information Authors and AffiliationsLaboratory for Optimization and Computation in Orthopaedic Surgery, Department of Orthopaedic Surgery, University of Michigan, 2019 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
Christopher J. Gatti & Richard E. Hughes
Correspondence to Richard E. Hughes.
About this article Cite this articleGatti, C.J., Hughes, R.E. Optimization of Muscle Wrapping Objects Using Simulated Annealing. Ann Biomed Eng 37, 1342–1347 (2009). https://doi.org/10.1007/s10439-009-9710-5
Received: 12 January 2009
Accepted: 29 April 2009
Published: 12 May 2009
Issue Date: July 2009
DOI: https://doi.org/10.1007/s10439-009-9710-5
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4