A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-008-9623-8 below:

Volume Ordering for Analysis and Modeling of Vascular Systems

Abstract

Morphological characteristics of vascular systems are commonly presented in terms of Strahler order because the logarithms of quantities such as vessel diameter and length are often linearly related to Strahler order. However, the ability to interpret Strahler order geometrically or physiologically is compromised because the precision of the order number is limited to integer values. This limitation is overcome by the volume ordering scheme, in which volume order number is defined as the logarithm of the estimated perfused tissue volume for each vascular segment. While Strahler and volume order numbers are equivalent for completely symmetrical branching trees, they deviate in the presence of asymmetries. The physiology-based definition of volume ordering offers benefits in the analysis of vascular design, fractal characterization of vascular systems, and blood flow modeling. These benefits are illustrated based on arterial kidney data that show a linear relationship of logarithmic vessel diameter and conductance as a function of both Strahler order and volume order with differing proportionality constants, which are expected to depend on the branching characteristics of the particular organ investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Bassingthwaighte, J. B., L. S. Liebovitch, and B. J. West. Fractal Physiology. Oxford: Oxford University Press for the American Physiological Society, 1994

  2. Gafiychuk V. V., Lubashevsky I. A. On the principles of the vascular network branching. J. Theor. Biol. 212: 1–9, 2001. 10.1006/jtbi.2001.2277

    Article  PubMed  CAS  Google Scholar 

  3. Kassab G. S., Rider C. A., Tang N. J., Fung Y. C. Morphometry of pig coronary arterial trees. Am. J. Physiol. 265: H350–H365, 1993

    PubMed  CAS  Google Scholar 

  4. Marxen, M. Fractal characteristics of vascular structure and modeling of blood flow in three dimensions. Ph.D. thesis, University of Toronto, 2005

  5. Marxen M., Henkelman R. M. Branching tree model with fractal vascular resistance explains fractal perfusion heterogeneity. Am. J. Physiol. Heart Circ. Physiol. 284: H1848–H1857, 2003

    PubMed  CAS  Google Scholar 

  6. Marxen M., Sled J. G., Yu L. X., Paget C., Henkelman R. M. Comparing microsphere deposition and flow modeling in 3D vascular trees. Am. J. Physiol. Heart Circ. Physiol. 291: H2136–H2141, 2006. 10.1152/ajpheart.00146.2006

    Article  PubMed  CAS  Google Scholar 

  7. Marxen M., Thornton M. M., Chiarot C. B., Klement G., Koprivnikar J., Sled J. G., Henkelman R. M. Micro CT scanner performance and considerations for vascular specimen imaging. Med. Phys. 31: 305–313, 2004. 10.1118/1.1637971

    Article  PubMed  Google Scholar 

  8. Mauroy B., Filoche M., Weibel E. R., Sapoval B. An optimal bronchial tree may be dangerous. Nature 427: 633–636, 2004. 10.1038/nature02287

    Article  PubMed  CAS  Google Scholar 

  9. Murray C. D. The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. USA 12: 207–214, 1926. 10.1073/pnas.12.3.207

    Article  PubMed  CAS  Google Scholar 

  10. Nordsletten D. A., Blackett S., Bentley M. D., Ritman E. L., Smith N. P. Structural morphology of renal vasculature. Am. J. Physiol. Heart Circ. Physiol. 291: H296–H309, 2006. 10.1152/ajpheart.00814.2005

    Article  PubMed  CAS  Google Scholar 

  11. Pallone T. L., Edwards A., Kreisberg M. S. The intrarenal distribution of blood flow. In: Anderson W. P., Evans R. G., Stevenson K. M. (eds) The Renal Circulation Stamford, CT: Jai Press Inc., 2000, p. 75–92

    Google Scholar 

  12. Popel A. S. Network models of peripheral circulation. In: Skalak R., Chien S. (eds) Handbook of Bioengineering New York: McGraw-Hill, 1987, p. 20.1–20.24

    Google Scholar 

  13. Press W. H., Flannery B. P., Teukolsky S. A., Vetterling W. T. Numerical Recipes in C: The Art of Scientific Computing. Cambridge/New York: Cambridge University Press, 1992

    Google Scholar 

  14. Pries A. R., Secomb T. W., Gaehtgens P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32: 654–667, 1996

    PubMed  CAS  Google Scholar 

  15. Sled, J. G., M. Marxen, and R. M. Henkelman. Analysis of micro-vasculature in whole kidney specimens using micro-CT. In 49th Annual Meeting of the International Symposium on Optical Science and Technology. Proc. SPIE 5535:53–64, 2004. doi:10.1117/12.559731

  16. Strahler A. N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union 38: 913–920, 1957

    Google Scholar 

  17. Suwa N., Takahashi T. Morphological and Morphometrical Analysis of Circulation in Hypertension and Ischemic Kidney. Urban and Schwarzenberg, Munich, 1971

    Google Scholar 

  18. West G. B., Brown J. H., Enquist B. J. A general model for the origin of allometric scaling laws in biology. Science 276: 122–126, 1997. 10.1126/science.276.5309.122

    Article  PubMed  CAS  Google Scholar 

  19. Xu L. X., Holmes K. R., Moore B., Chen M. M., Arkin H. Microvascular architecture within the pig kidney cortex. Microvasc. Res. 47: 293–307, 1994. 10.1006/mvre.1994.1023

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the Canadian Institutes of Health Research and the National Cancer Institute of Canada. We also thank Janet Koprivnikar and Lisa Yu, who prepared the microCT specimens. R. Mark Henkelman is the recipient of a Canada Research Chair in Imaging.

Author information Authors and Affiliations
  1. Rotman Research Institute, Baycrest Centre for Geriatric Care, 3560 Bathurst St., Toronto, ON, M6A 2E1, Canada

    M. Marxen

  2. Department of Medical Biophysics, University of Toronto, Toronto, Canada

    J.G. Sled & R.M. Henkelman

  3. Hospital for Sick Children – Mouse Imaging Centre, Toronto, Canada

    J.G. Sled & R.M. Henkelman

  4. Sunnybrook Health Sciences Centre, Toronto, Canada

    R.M. Henkelman

Authors
  1. M. Marxen
  2. J.G. Sled
  3. R.M. Henkelman
Corresponding author

Correspondence to M. Marxen.

About this article Cite this article

Marxen, M., Sled, J. & Henkelman, R. Volume Ordering for Analysis and Modeling of Vascular Systems. Ann Biomed Eng 37, 542–551 (2009). https://doi.org/10.1007/s10439-008-9623-8

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4