A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-008-9619-4 below:

Effects of Loading Orientation on the Morphology of the Predicted Yielded Regions in Trabecular Bone

  • Badiei A., M. J. Bottema, N. L. Fazzalari 2007 Influence of orthogonal overload on human vertebral trabecular bone mechanical properties. J Bone Miner Res. 22(11), 1690–9 doi:10.1359/jbmr.070706

    Article  PubMed  Google Scholar 

  • Bayraktar H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, T. M. Keaveny 2004 Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37(1), 27–35 doi:10.1016/S0021-9290(03)00257-4

    Article  PubMed  Google Scholar 

  • Bevill G., S. K. Eswaran, A. Gupta, P. Papadopoulos, T. M. Keaveny 2006 Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 39(6), 1218–25 doi:10.1016/j.bone.2006.06.016

    Article  PubMed  Google Scholar 

  • Bourne B. C., M. C. van der Meulen 2004 Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech. 37(5), 613–21, doi:10.1016/j.jbiomech.2003.10.002

    Article  PubMed  Google Scholar 

  • Charras G. T., R. E. Guldberg 2000 Improving the local solution accuracy of large-scale digital image-based finite element analyses. J Biomech. 33(2), 255–9 doi:10.1016/S0021-9290(99)00141-4

    Article  PubMed  CAS  Google Scholar 

  • Cowin S. C. The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4, 137–47, 1985. doi:10.1016/0167-6636(85)90012-2

    Article  Google Scholar 

  • Gibson L. J. 1985 The mechanical behaviour of cancellous bone. J. Biomech. 18(5), 317–28 doi:10.1016/0021-9290(85)90287-8

    Article  PubMed  CAS  Google Scholar 

  • Gibson L. J. 2005 Biomechanics of cellular solids. J Biomech 38(3), 377–99, doi:10.1016/j.jbiomech.2004.09.027

    Article  PubMed  Google Scholar 

  • Guldberg R. E., S. J. Hollister, G. T. Charras 1998 The accuracy of digital image-based finite element models. J Biomech Eng 120(2):289–95 doi:10.1115/1.2798314

    Article  PubMed  CAS  Google Scholar 

  • Hara T., E. Tanck, J. Homminga, R. Huiskes 2002 The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31(1), 107–9 doi:10.1016/S8756-3282(02)00782-2

    Article  PubMed  CAS  Google Scholar 

  • Harrison N. M., P. F. McDonnell, D. C. O’Mahoney, O. D. Kennedy, F. J. O’Brien, P. E. McHugh 2008 Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J Biomech. 41(11), 2589–96 doi:10.1016/j.jbiomech.2008.05.014

    Article  PubMed  Google Scholar 

  • Hollister S. J., J. M. Brennan, N. Kikuchi 1994 A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27(4), 433–44 doi:10.1016/0021-9290(94)90019-1

    Article  PubMed  CAS  Google Scholar 

  • Jaasma M. J., H. H. Bayraktar, G. L. Niebur, T. M. Keaveny 2002 Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone J Biomech. 35(2), 237–46, doi:10.1016/S0021-9290(01)00193-2

    Article  PubMed  Google Scholar 

  • Kabel J., B. van Rietbergen, A. Odgaard, R. Huiskes. 1999 Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25(4), 481–6, doi:10.1016/S8756-3282(99)00190-8

    Article  PubMed  CAS  Google Scholar 

  • Liu X. S., P. Sajda, P. K. Saha, F. W. Wehrli, X. E. Guo. 2006 Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J. Bone Miner. Res. 21(10), 1608–17 doi:10.1359/jbmr.060716

    Article  PubMed  Google Scholar 

  • Liu X., X. Wang, G. L. Niebur 2003 Effects of damage on the orthotropic material symmetry of bovine tibial trabecular bone. J. Biomech. 36(12), 1753–9 doi:10.1016/S0021-9290(03)00217-3

    Article  PubMed  Google Scholar 

  • Morgan E. F., O. C. Yeh, T. M. Keaveny 2005 Damage in trabecular bone at small strains. Eur J Morphol 42(1–2), 13–21, doi:10.1080/09243860500095273

    Article  PubMed  Google Scholar 

  • Nagaraja S., T. L. Couse, R. E. Guldberg 2005 Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech 38(4), 707–16 doi:10.1016/j.jbiomech.2004.05.013

    Article  PubMed  Google Scholar 

  • Niebur G. L., M. J. Feldstein, T. M. Keaveny. 2002 Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng 124(6), 699–705 doi:10.1115/1.1517566

    Article  PubMed  Google Scholar 

  • Niebur G. L., M. J. Feldstein, J. C. Yuen, T. J. Chen, T. M. Keaveny 2000 High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J. Biomech. 33(12), 1575–83, doi:10.1016/S0021-9290(00)00149-4

    Article  PubMed  CAS  Google Scholar 

  • Niebur G. L., J. C. Yuen, A. J. Burghardt, T. M. Keaveny 2001 Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions. J. Biomech. 34(5), 699–706 doi:10.1016/S0021-9290(01)00003-3

    Article  PubMed  CAS  Google Scholar 

  • Niebur G. L., J. C. Yuen, A. C. Hsia, T. M. Keaveny 1999 Convergence behavior of high-resolution finite element models of trabecular bone. J Biomech Eng 121(6), 629–35 doi:10.1115/1.2800865

    Article  PubMed  CAS  Google Scholar 

  • van Rietbergen B., R. Huiskes, F. Eckstein, P. Ruegsegger 2003 Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18(10), 1781–8 doi:10.1359/jbmr.2003.18.10.1781

    Article  PubMed  Google Scholar 

  • van Rietbergen B., A. Odgaard, J. Kabel, R. Huiskes 1998 Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J. Orthop. Res 16(1), 23–8, doi:10.1002/jor.1100160105

    Article  PubMed  Google Scholar 

  • van Rietbergen B., H. Weinans, R. Huiskes, A. Odgaard 1995 A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28(1), 69–81 doi:10.1016/0021-9290(95)80008-5

    Article  PubMed  Google Scholar 

  • van Ruijven L. J., E. B. Giesen, L. Mulder, M. Farella, T. M. van Eijden 2005 The effect of bone loss on rod-like and plate-like trabeculae in the cancellous bone of the mandibular condyle. Bone 36(6), 1078–85, doi:10.1016/j.bone.2005.02.018

    Article  PubMed  Google Scholar 

  • Shapiro, L. G., and G. C. Stockman. Computer Vision. Prentice Hall, 580 pp., 2001.

  • Tang S. Y., D. Vashishth 2007 A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone. Bone. 40(5), 1259–64 doi:10.1016/j.bone.2006.10.031

    Article  PubMed  CAS  Google Scholar 

  • Turner C. H., S. C. Cowin, J. Y. Rho, R. B. Ashman, J. C. Rice. 1990 The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech 23(6), 549–61, doi:10.1016/0021-9290(90)90048-8

    Article  PubMed  CAS  Google Scholar 

  • Wang X., J. Guyette, X. Liu, R. K. Roeder, G. L. Niebur 2005 Axial–shear interaction effects on microdamage in bovine tibial trabecular bone. Eur J Morphol 42(1–2), 61–70 doi:10.1080/09243860500095570

    Article  PubMed  Google Scholar 

  • Wang X., X. Liu, G. L. Niebur 2004 Preparation of on-axis cylindrical trabecular bone specimens using micro-CT imaging. J Biomech Eng 126(1), 122–5, doi:10.1115/1.1645866

    Article  PubMed  Google Scholar 

  • Wang X., D. B. Masse, H. Leng, K. P. Hess, R. D. Ross, R. K. Roeder, G. L. Niebur. 2007 Detection of trabecular bone microdamage by micro-computed tomography. J Biomech. 40(15), 3397–403 doi:10.1016/j.jbiomech.2007.05.009

    Article  PubMed  Google Scholar 

  • Wang X., G. L. Niebur 2006 Microdamage propagation in trabecular bone due to changes in loading mode. J Biomech 39(5), 781–90 doi:10.1016/j.jbiomech.2005.02.007

    Article  PubMed  Google Scholar 

  • Wehrli F. W. 2007 W Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J. Magn. Reson. Imaging 25(2), 390–409, doi:10.1002/jmri.20807

    Article  PubMed  Google Scholar 

  • Wolff J., P. G. J. Maquet, and R. Furlong. The Law of Bone Remodelling. Berlin, New York: Springer-Verlag, 126 pp., 1986.

  • Yeni Y. N., F. J. Hou, T. Ciarelli, D. Vashishth, D. P. Fyhrie 2003 Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone. Ann. Biomed. Eng. 31(6), 726–32 doi:10.1114/1.1569264

    Article  PubMed  Google Scholar 

  • Zysset P. K., A. Curnier 1995 An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21, 243–50, doi:10.1016/0167-6636(95)00018-6

    Article  Google Scholar 

  • Zysset P. K., A. Curnier 1996 A 3D damage model for trabecular bone based on fabric tensors. J. Biomech. 29(12), 1549–58, doi:10.1016/S0021-9290(96)80006-6

    PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4