A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-008-9593-x below:

The Relation Between Oxygen Consumption and the Equilibrated Inspired Oxygen Fraction in an Anesthetic Circle Breathing System: A Mathematic Formulation & Laboratory Simulations

Abstract

Measuring a patients’ oxygen consumption ( \( {\dot{\text{V}}}{\text{O}}_{2} \)) is valuable in critical care and during anesthesia. Up to now, there has been no satisfactory equation describing the relation between the \( {\dot{\text{V}}}{\text{O}}_{2} \), the fresh gas, and FIO2 in a semi-closed circle breathing system. By adopting a “volume-weighted average concentration” approach and stepwise calculations, we have proposed an equation. We constructed a model with known simulated O2 consumption (\( _{{{\text{SIM}}}} {\dot{\text{V}}}{\text{O}}_{2} \)) to test our equation and two other previous methods (Biro’s and Azami’s). After 32 different laboratory scenarios, the %-error of the calculated \( {\dot{\text{V}}}{\text{O}}_{2} \) (\( _{{{\text{CAL}}}} {\dot{\text{V}}}{\text{O}}_{2} \)) from our method is −4.0 ± 2.9%, which is significantly better than those from Azami’s method (−8.8 ± 6.2%, p < 0.01) and from Biro’s method (−27.4 ± 5.1%, p < 0.01). We also produce a Bland–Altman analysis of our \( _{{{\text{CAL}}}} {\dot{\text{V}}}{\text{O}}_{2} \) and \( _{{{\text{SIM}}}} {\dot{\text{V}}}{\text{O}}_{2} . \) The 95% limits of agreement are −18.6–3.3 mL/min with a mean bias of −7.7 mL/min, which shows a good agreement. Our equation also explains the difference between FIO2 and the oxygen concentration of the fresh gas in a semi-closed circle breathing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Azami T., Preiss D., Somogyi R., Vesely A., Prisman E., Iscoe S., De Wolf A. M., Fisher J. A. 2004 Calculation of O2 consumption during low-flow anesthesia from tidal gas concentrations, flowmeter, and minute ventilation. J. Clin. Monit. Comput. 18(5–6): 325–332. doi:10.1007/s10877-005-4299-1

    Article  PubMed  Google Scholar 

  2. Barnard J. P., Sleigh J. W. 1995 Breath-by-breath analysis of oxygen uptake using the Datex Ultima. Br. J. Anaesth. 74(2): 155–158. doi:10.1093/bja/74.2.155

    Article  PubMed  CAS  Google Scholar 

  3. Biro P. 1998 A formula to calculate oxygen uptake during low flow anesthesia based on FIO2 measurement. J. Clin. Monit. Comput. 14(2): 141–144. doi:10.1023/A:1007413018732

    Article  PubMed  CAS  Google Scholar 

  4. Bizouarn P., Blanloeil Y., Pinaud M. 1995 Comparison between oxygen consumption calculated by Fick’s principle using a continuous thermodilution technique and measured by indirect calorimetry. Br. J. Anaesth. 75(6): 719–723

    PubMed  CAS  Google Scholar 

  5. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet i: 307–310, 1986

    Google Scholar 

  6. Farmery A. D., Hahn C. E. 2001 A method of reconstruction of clinical gas-analyzer signals corrupted by positive-pressure ventilation. J. Appl. Physiol. 90(4): 1282–1290

    PubMed  CAS  Google Scholar 

  7. Foldes F. F., Ceravolo A. J., Carpenter S. L. 1952 The administration of nitrous oxide-oxygen anesthesia in closed systems. Ann. Surg. 136(6): 978–981. doi:10.1097/00000658-195212000-00009

    Article  PubMed  CAS  Google Scholar 

  8. Hanique G., Dugernier T., Laterre P. F., Roeseler J., Dougnac A., Reynaert M. S. 1994 Evaluation of oxygen uptake and delivery in critically ill patients: a statistical reappraisal. Intensive Care Med. 20(1): 19–26. doi:10.1007/BF02425049

    Article  PubMed  CAS  Google Scholar 

  9. Keinanen O., Takala J. 1997 Calculated versus measured oxygen consumption during and after cardiac surgery. Is it possible to estimate lung oxygen consumption? Acta Anaesthesiol. Scand. 41(7): 803–809

    Article  PubMed  CAS  Google Scholar 

  10. Leonard I. E., Weitkamp B., Jones K., Aittomaki J., Myles P. S. 2002 Measurement of systemic oxygen uptake during low-flow anaesthesia with a standard technique vs. a novel method. Anaesthesia 57(7): 654–658. doi:10.1046/j.1365-2044.2002.02606.x

    Article  PubMed  CAS  Google Scholar 

  11. McLellan S., Walsh T., Burdess A., Lee A. 2002 Comparison between the Datex-Ohmeda M-COVX metabolic monitor and the Deltatrac II in mechanically ventilated patients. Intensive Care Med. 28(7): 870–876. doi:10.1007/s00134-002-1323-5

    Article  PubMed  CAS  Google Scholar 

  12. Stuart-Andrews C., Peyton P., Robinson G., Lithgow B. 2004 Accuracy of the Foldes–Biro equation for measurement of oxygen uptake during anaesthesia: a laboratory simulation. Anaesthesia 59(6): 541–544. doi:10.1111/j.1365-2044.2004.03737.x

    Article  PubMed  CAS  Google Scholar 

  13. Stuart-Andrews C., Peyton P., Robinson G. J. B., Terry D., O’Connor B., Van der herten C., Lithgow B. 2007 In vivo validation of the M-COVX metabolic monitor in patients under anaesthesia. Anaesth. Intens. Care 35(3):398–405

    CAS  Google Scholar 

  14. Verkaaik A. P., Erdmann W. 1990 Respiratory diagnostic possibilities during closed circuit anesthesia. Acta Anaesthesiol. Belg. 41(3): 177–188

    PubMed  CAS  Google Scholar 

  15. Verkaaik A. P., Van Dijk G. 1994 High flow closed circuit anaesthesia. Anaesth. Intens. Care 22(4): 426–434

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Marvin Chou for technical supports of the AS/3 anesthesia machine. Support was provided solely from institutional and/or department sources.

Author information Authors and Affiliations
  1. Department of Anesthesiology, Chung Shan Medical University and Hospital, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, 402, Taiwan, R.O.C

    Tsai-Hsin Chen, Wen-Ru Ko, Cher-Ming Liou & Wei-Te Hung

  2. Department of Otorhinolaryngology, Chung Shan Medical University and Hospital, Taichung, 402, Taiwan, R.O.C

    Chung-Han Hsin

Authors
  1. Tsai-Hsin Chen
  2. Chung-Han Hsin
  3. Wen-Ru Ko
  4. Cher-Ming Liou
  5. Wei-Te Hung
Corresponding author

Correspondence to Wei-Te Hung.

Appendix Appendix

In order to monitor O2 concentration, the multigas analyzer continuously samples gas from the Y-connector. If the sampled gas is returned to the circle (as in Fig. 1), 30 mL/min of room air is also added to the returned gas in addition to 200 mL/min of sampled gas. Room air serves as a reference gas for O2 measurement. In our calculations, the effect of the multigas analyzer on \( {\dot{\text{V}}}{\text{O}}_{2} \) calculation is considered as the addition of a flushing gas, the entrained room air, into the ventilator bellow. Equation 4 can be rewritten as:

$$ {\text{F}}_{{{\text{VB}}}} {\text{O}}_{{\text{2}}} = \frac{{{\left( {V_{{{\text{Expand}}}} + {\dot{\text{V}}}_{{{\text{FG}}}} \times E_{{\text{S}}} } \right)} \times {\text{F}}_{{\text{I}}} {\text{O}}_{{\text{2}}} + {\text{(TV}} - {\text{O}}_{{{\text{2Uptake}}}} + {\text{CO}}_{{{\text{2Produce}}}} {\text{)}} \times {\text{F}}_{{{\text{Exhale}}}} {\text{O}}_{{\text{2}}} + {\text{(30/RR)}} \times {\text{0}}{\text{.21}}}} {{V_{{{\text{Expand}}}} + {\dot{\text{V}}}_{{{\text{FG}}}} \times E_{{\text{S}}} + {\left( {{\text{TV}} - {\text{O}}_{{{\text{2Uptake}}}} + {\text{CO}}_{{{\text{2Produce}}}} } \right)} + {\left( {{\text{30/RR}}} \right)}}} $$

(4′)

30/RR is the volume of the entrained air in one respiratory period, and 0.21 is the O2 concentration of room air.

Equations (5) and (6) change to:

$$ {\text{F}}_{{{\text{VB}}}} {\text{O}}_{{\text{2}}} = \frac{{{\text{(}}V_{{{\text{Expand}}}} + {\dot{\text{V}}}_{{{\text{FG}}}} \times E_{{\text{S}}} {\text{)}} \times {\text{F}}_{{\text{I}}} {\text{O}}_{{\text{2}}} + {\text{(TV}} \times {\text{F}}_{{\text{I}}} {\text{O}}_{{\text{2}}} - {\text{O}}_{{{\text{2Uptake}}}} {\text{)}} + {\text{(30/RR)}} \times {\text{0}}{\text{.21}}}} {{V_{{{\text{Expand}}}} + {\dot{\text{V}}}_{{{\text{FG}}}} \times E_{{\text{S}}} + {\text{(TV}} - {\text{O}}_{{{\text{2Uptake}}}} + {\text{CO}}_{{{\text{2Produce}}}} {\text{)}} + {\text{(30/RR)}}}} $$

(5′)

$$ {\text{F}}^{\prime }_{{{\text{VB}}}} {\text{O}}_{{\text{2}}} {\text{ = }}\frac{{{\text{(}}V_{{{\text{Expand}}}} + {\dot{\text{V}}}_{{{\text{FG}}}} \times E_{{\text{S}}} {\text{)}} \times {\text{F}}_{{\text{I}}} {\text{O}}_{{\text{2}}} + {\text{(TV}} \times {\text{F}}_{{\text{I}}} {\text{O}}_{{\text{2}}} - {\text{O}}_{{{\text{2Uptake}}}} {\text{)}} + {\text{(30/RR)}} \times {\text{0}}{\text{.21}}}} {{V_{{{\text{Expand}}}} + {\dot{\text{V}}}_{{{\text{FG}}}} \times E_{{\text{S}}} + {\text{(TV}} - {\text{O}}_{{{\text{2Uptake}}}} {\text{)}} + {\text{(30/RR)}}}} $$

(6′)

Solving Eq. (2), (6′), and (7) gives: \( {\text{O}}_{{{\text{2Uptake}}}} = \frac{{{\text{A}} + {\text{B}} + {\text{C}}}} {{{\text{D}} + {\text{E}} - {\text{F}}}} \), in which A, B, D, E, and F are the same as in Eq. (8), and C is the corrected term in Eq. (9).

Of course the volume of the entrained air is much smaller than that of the other three flushing gases, and its effect might be simply omitted. However, the effect of the entrained air would be appreciable when the fresh gas flow approaches \( {\dot{\text{V}}}{\text{O}}_{2} \) or in a closed system.

About this article Cite this article

Chen, TH., Hsin, CH., Ko, WR. et al. The Relation Between Oxygen Consumption and the Equilibrated Inspired Oxygen Fraction in an Anesthetic Circle Breathing System: A Mathematic Formulation & Laboratory Simulations. Ann Biomed Eng 37, 246–254 (2009). https://doi.org/10.1007/s10439-008-9593-x

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4