A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-008-9585-x below:

Heart Rhythm and Cardiac Pacing: An Integrated Dual-Chamber Heart and Pacer Model

Abstract

Modern cardiac pacemaker can sense electrical activity in both atrium and ventricle, and deliver precisely timed stimulations to one or both chambers on demand. However, little is known about how the external cardiac pacing interacts with the heart’s intrinsic activity. In this study, we present an integrated dual-chamber heart and pacer (IDHP) model to simulate atrial and ventricular rhythms in the presence of dual chamber cardiac pacing and sensing. The IDHP model is an extension and improvement of a previously developed open source model for simulating ventricular rhythms in atrial fibrillation and ventricular pacing. The new model takes into account more realistic properties of atrial and ventricular rhythm generators, as well as bi-directional conductions in atrium, ventricle, and the atrio-ventricular junction. Moreover, an industry-standard dual-chamber pacemaker timing control logic is incorporated in the model. We present examples to show that the new model can generate realistic cardiac rhythms in both physiologic and pathologic conditions, and simulate various interactions between intrinsic heart activity and extrinsic cardiac pacing. Among many applications, the IDHP model provides a new simulation platform where it is possible to bench test advanced pacemaker algorithms in the presence of different types of cardiac rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. References
  1. Abraham W. T., D. L. Hayes 2003 Cardiac resynchronization therapy for heart failure. Circulation 108, 2596–2603. doi:10.1161/01.CIR.0000096580.26969.9A

    Article  PubMed  Google Scholar 

  2. Asano Y., J. Saito, T. Yamamoto, M. Uchida, Y. Yamada, K. Matsumoto, H. Matsuo 1995 Electrophysiologic determinants of ventricular rate in human atrial fibrillation. J. Cardiovasc. Electrophysiol. 6, 343–349. doi:10.1111/j.1540-8167.1995.tb00406.x

    Article  PubMed  CAS  Google Scholar 

  3. Chorro F. J., C. J. Kirchhof, J. Brugada, M. A. Allessie 1990 Ventricular response during irregular atrial pacing and atrial fibrillation. Am. J. Physiol. 259, H1015–H1021

    PubMed  CAS  Google Scholar 

  4. Cohen R. J., R. D. Berger, T. E. Dushane 1983 A quantitative model for the ventricular response during atrial fibrillation. IEEE Trans. Biomed. Eng. 30, 769–781. doi:10.1109/TBME.1983.325077

    Article  PubMed  CAS  Google Scholar 

  5. Ellenbogen K. A., M. A. Wood. Cardiac Pacing and ICDs. 4th edn. Malden: Blackwell Publishing, 2005

    Google Scholar 

  6. Goldberger A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, H. E. Stanley 2000 PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101, E215–E220

    PubMed  CAS  Google Scholar 

  7. Goldstein R. E., G. O. Barnett 1967 A statistical study of the ventricular irregularity of atrial fibrillation. Comput. Biomed. Res. 1, 146–161. doi:10.1016/0010-4809(67)90013-4

    Article  PubMed  CAS  Google Scholar 

  8. Heethaar R. M., J. J. Denier van der Gon, F. L. Meijler 1973 Mathematical model of A-V conduction in the rat heart. Cardiovasc. Res. 7, 105–114. doi:10.1093/cvr/7.1.105

    Article  PubMed  CAS  Google Scholar 

  9. Heethaar R. M., R. M. De Vos Burchart, J. J. Denier Van Der Gon, F. L. Meijler 1973 A mathematical model of A-V conduction in the rat heart. II. Quantification of concealed conduction. Cardiovasc. Res. 7, 542–556. doi:10.1093/cvr/7.4.542

    Article  Google Scholar 

  10. Honzikova N., B. Fiser, B. Semrad 1973 Ventricular function in patients with atrial fibrillation. A simulation model study with the aid of a computer. Cor. Vasa. 15, 257–264

    PubMed  CAS  Google Scholar 

  11. Jorgensen P., C. Schafer, P. G. Guerra, M. Talajic, S. Nattel, L. Glass 2002 A mathematical model of human atrioventricular nodal function incorporating concealed conduction. Bull. Math. Biol. 64, 1083–1099. doi:10.1006/bulm.2002.0313

    Article  PubMed  Google Scholar 

  12. Lian J., D. Müssig, V. Lang 2006 Computer modeling of ventricular rhythm during atrial fibrillation and ventricular pacing. IEEE Trans. Biomed. Eng. 53, 1512–1520. doi:10.1109/TBME.2006.876627

    Article  PubMed  Google Scholar 

  13. Lian, J., D. Müssig, and V. Lang. Validation of a novel atrial fibrillation model through simulated atrial pacing protocols. In: Proceedings of the 28th Annual International Conference of IEEE EMBS, 2006, pp. 4024–4027

  14. Lian J., D. Müssig, V. Lang 2007 On the role of ventricular conduction time in rate stabilization for atrial fibrillation. Europace 9, 289–293. doi:10.1093/europace/eum006

    Article  PubMed  Google Scholar 

  15. Lian J., D. Müssig, V. Lang 2007 Ventricular rate smoothing for atrial fibrillation: a quantitative comparison study. Europace 9, 506–513. doi:10.1093/europace/eum088

    Article  PubMed  Google Scholar 

  16. Lian J., G. Clifford, D. Müssig, V. Lang 2007 Open source model for generating RR intervals in atrial fibrillation and beyond. Biomed. Eng. OnLine 6, 9. doi:10.1186/1475-925X-6-9

    Article  PubMed  Google Scholar 

  17. Meijler F. L., J. Jalife, J. Beaumont, D. Vaidya 1996 AV nodal function during atrial fibrillation: the role of electrotonic modulation of propagation. J. Cardiovasc. Electrophysiol. 7, 843–861. doi:10.1111/j.1540-8167.1996.tb00597.x

    Article  PubMed  CAS  Google Scholar 

  18. Moe G. K., J. A. Abildskov 1964 Observations on the ventricular dysrhythmia associated with atrial fibrillation in the dog heart. Circ. Res. 14, 447–460

    PubMed  CAS  Google Scholar 

  19. Mond H. G., M. Irwin, C. Morillo, H. Ector 2004 The world survey of cardiac pacing and cardioverter defibrillators: calendar year 2001. Pacing Clin. Electrophysiol. 27, 955–964. doi:10.1111/j.1540-8159.2004.00565.x

    Article  PubMed  Google Scholar 

  20. Padeletti L., F. Fantini, A. Michelucci, P. Pieragnoli, A. Colella, N. Musilli, G. Ricciardi, T. A. Buhr, S. Valsecchi 2005 Rate stabilization by right ventricular apex or His bundle pacing in patients with atrial fibrillation. Europace 7, 454–459. doi:10.1016/j.eupc.2005.05.007

    Article  PubMed  Google Scholar 

  21. Talajic M., D. Papadatos, C. Villemaire, L. Glass, S. Nattel 1991 A unified model of atrioventricular nodal conduction predicts dynamic changes in Wenckebach periodicity. Circ. Res. 68, 1280–1293

    PubMed  CAS  Google Scholar 

  22. Trohman R. G., M. H. Kim, S. L. Pinski 2004 Cardiac pacing: the state of the art. Lancet 364, 1701–1719. doi:10.1016/S0140-6736(04)17358-3

    Article  PubMed  Google Scholar 

  23. Vereckei A., Z. Vera, H. P. Pride, D. P. Zipes 1992 Atrioventricular nodal conduction rather than automaticity determines the ventricular rate during atrial fibrillation and atrial flutter. J. Cardiovasc. Electrophysiol. 3, 534–543

    Google Scholar 

  24. Wittkampf F. H., M. J. De Jongste 1985 Rate stabilization by right ventricular pacing in patients with atrial fibrillation. Pacing Clin. Electrophysiol. 9, 1147–1153. doi:10.1111/j.1540-8159.1986.tb06685.x

    Article  Google Scholar 

  25. Wittkampf F. H., M. J. de Jongste, H. I. Lie, F. L. Meijler 1988 Effect of right ventricular pacing on ventricular rhythm during atrial fibrillation. J. Am. Coll. Cardiol. 11, 539–545

    Article  PubMed  CAS  Google Scholar 

  26. Zeng W., L. Glass 1996 Statistical properties of heartbeat intervals during atrial fibrillation. Phys. Rev. E 54, 1779–1784. doi:10.1103/PhysRevE.54.1779

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is fully funded by Biotronik GmbH. J. L. and D. M. are both employees of Micro Systems Engineering Inc., a wholly owned subsidiary of Biotronik. Interested readers can contact the authors for using the software program of the present model for research purpose.

Author information Authors and Affiliations
  1. Micro Systems Engineering, Inc., 6024 SW Jean Road, Lake Oswego, OR, 97035, USA

    Jie Lian & Dirk Müssig

Authors
  1. Jie Lian
  2. Dirk Müssig
Corresponding author

Correspondence to Jie Lian.

Appendices Appendix A: Basics of Pacemaker Timing

Modern pacemakers have many therapeutic and diagnostic features, which are supported by hundreds of sophisticated pacer-specific timers and windows. While it is beyond the scope of this paper to discuss the detailed pacemaker timing logic, the basic concept of dual-chamber pacemaker sensing and pacing is summarized below.

Figure A1 illustrates some common pacemaker windows used for device sensing. After each AP or VP, a blanking window is applied to the same channel and another blanking window is applied to the other channel to prevent device from sensing the pacing artifact. Any electrical event occurring in these blanking windows is not seen by the pacemaker. Each AP (or VP) also starts an atrial (or ventricular) refractory window, when an atrial (or ventricle) event can be seen, but usually is ignored by the pacemaker. A VP triggers both a far-field window and a post-ventricular atrial refractory period in the atrial channel. The former prevents far-field sensing of ventricular depolarization, and the latter prevents tracking of retrograde AS event that may lead to pacemaker-mediated tachycardia (see Fig. 11). On the other hand, an AP triggers a safety window in the ventricle channel. If an intrinsic ventricular activity is detected during this window (could not be differentiated from cross-talk), a VP will be triggered at the end of the safety window to prevent ventricular asystole. In addition, an upper tracking interval is applied after each VP, which sets the upper limit to the ventricular pacing rate in DDD mode (see Fig. 9). Similar windows are also applied after each AS or VS event (not shown).

Figure A1

Schematic illustration of the pacemaker windows used for sensing

Figure A2 illustrates the basic timing concept of pacemaker in (a) DDD mode and (b) DDI mode. DDD mode is an atrial-tracking mode, i.e., pacer’s basic interval and AV delay start with each AP or AS. Timeout of the basic interval triggers an AP, and timeout of the AV delay triggers a VP. An AS event detected during the basic interval inhibits the AP, and a VS event detected during the AV delay inhibits the VP. Additionally, a pacer-classified ventricular extra-systole reschedules the next AP at the calculated VA delay. Contrarily, DDI mode is a non-atrial tracking mode. The pacer’s basic interval and VA delay starts with each VP or VS. Timeout of the basic interval triggers a VP, and timeout of the VA delay triggers an AP. A VS event detected during the basic interval inhibits the VP, and an AS event detected during the VA delay inhibits the AP.

Figure A2

Schematic illustration of the pacemaker timing in (a) DDD mode and (b) DDI mode. BI: basic interval; AVD: AV delay; VAD: VA delay; VES: ventricular extra-systole

Appendix B: Model Parameters

The simulation loads model parameters from an external configuration file. The model parameters are grouped into nine parts, corresponding to the simulation environment and eight model components. Most parameters inherited from the AF–VP model have been described elsewhere,12,16 whereas those extended heart model parameters and pacer specific model parameters can be understood from the text or comments. An exemplary set of model parameters is listed in Table B1. The parameters that are changed to produce Figs. 611 are, respectively, listed in Table B2.

Table B1 List of an exemplary set of model parameters Table B2 List of model parameter changes from Table B1 to produce Figs. 6–11 Appendix C: Model Event Handling

This section describes the IDHP event handling services shown in Figs. 4 and 5.

The ArgOutput service is called upon an atrial rhythm generator output (Fig. C1a). The model gets the atrial impulse strength (ΔV) and predicts the arrival time of the next impulse. No atrial depolarization is possible if the atrium is still refractory; otherwise, an antegrade atrial activation wave is generated. The VrgOutput service for ventricle rhythm generator output (Fig. C1b) is similarly implemented, except that the ventricular impulse is assumed strong enough that it can bring the AVJ membrane potential (V m) to the depolarization threshold (V T).

Figure C1

The event handling flowcharts for (a) atrial rhythm generator output and (b) ventricle rhythm generator output

Atrial fusion (AtrFusion) terminates both antegrade and retrograde atrial activation waves (Fig. C2a), and ventricle fusion (VtrFusion) annihilates ventricular activation waves in both directions (Fig. C2b).

Figure C2

The event handling flowcharts for (a) atrial fusion and (b) ventricular fusion

As shown in Fig. C3a, the antegrade atrial conduction stops when it hits the AVJ (AntHitAvj). If AVJ is in phase 4, then V m has a step increase of ΔV, and antegrade AVJ activation is flagged if V m ≥ V T. If AVJ is still refractory, then its refractory period is extended (electrotonic modulation). If there is a retrograde wave in the AVJ and the atrial impulse has supra-threshold strength, then the retrograde AV conduction is disabled. The counterpart service for retrograde invasion of AVJ (RetHitAvj) is similarly implemented (Fig. C3b).

Figure C3

The event handling flowcharts for (a) antegrade invasion of AVJ and (b) retrograde invasion of AVJ

The AnteEscAvj service is called upon completion of the antegrade AV conduction (Fig. C4a). It also enables the AVJ for recovery, and starts an antegrade ventricle activation wave if the ventricle is not refractory. Similarly, the RetrEscAvj service is implemented (Fig. C4b).

Figure C4

The event handling flowcharts for (a) antegrade escaping from AVJ and (b) retrograde escaping from AVJ

The ActivateAvj service (Fig. C5a) is called when V m ≥ V T. It calculates the AV conduction time based on elapsed AVJ recovery time. If the AVJ is antegrade (or retrograde) excited, then an antegrade (or retrograde) AVJ activation wave is generated if there is no activation wave in the opposite direction; otherwise, the opposite activation wave is stopped (AVJ fusion). Start of the AVJ phase 4 (StartAvjPh4) resets V m to the resting potential (V R) and enables AVJ to recover (Fig. C5b). The StartAvjRef service (Fig. C5c) flags the AVJ refractory phase, calculates the refractory period based on the AVJ recovery time, and then starts the AVJ refractory timer.

Figure C5

The event handling flowcharts for (a) activation of AVJ, (b) start AVJ phase 4, and (c) start AVJ refractory period

The AtrPace service first checks if the AP amplitude is above the atrial threshold and if the atrium is non-refractory (Fig. C6a). Only if both conditions are met, an antegrade atrial activation wave is generated with supra-threshold strength, and the atrial rhythm generator is reset. Any AP (capture or non-capture) will affect pacer’s operation, such as interval measurement, timer update, and marker annotation. Similar implementation of the VtrPace service is shown in Fig. C6b.

Figure C6

The event handling flowcharts for (a) atrial pacing and (b) ventricular pacing

The AtrSense service is called upon detection of any electrical activity by the atrial lead (Fig. C7a). If the sense is caused by retrograde atrial activation, then the atrial rhythm generator is reset. For each atrial sense (excluding blanked ones), pacer will classify its event type, update various counters, timers, intervals, and record the event markers. Similar implementation of the VtrSense service is shown in Fig. C7b.

Figure C7

The event handling flowcharts for (a) atrial sensing and (b) ventricular sensing

About this article Cite this article

Lian, J., Müssig, D. Heart Rhythm and Cardiac Pacing: An Integrated Dual-Chamber Heart and Pacer Model. Ann Biomed Eng 37, 64–81 (2009). https://doi.org/10.1007/s10439-008-9585-x

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4