A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-008-9440-0 below:

A Three-Dimensional Finite Element Model of the Cervical Spine with Spinal Cord: An Investigation of Three Injury Mechanisms

  • Arbogast, K. B., M. T. Prange, D. F. Meaney, and S. S. Margulies. Properties of cerebral gray and white matter undergoing large deformation. In: 7th Injury Prevention Through Biomechanics, Centers for Disease Control, 1997

  • Bain A. C., D. F. Meaney 2000 Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122(6), 615–622

    Article  PubMed  CAS  Google Scholar 

  • Bilston, L. E. Finite element analysis of some cervical spinal cord injury modes. In: Proceedings, International IRCOBI Conference on the Biomechanics of Impact, Goteborg, Sweden, 1998

  • Bilston L. E., L. E. Thibault 1996 The mechanical properties of the human cervical spinal cord in vitro. Ann. Biomed. Eng. 24(1), 67–74

    Article  PubMed  CAS  Google Scholar 

  • Breig, A. Biomechanics of the Central Nervous System. Chicago: The Year Book Publishers, Inc., 183 pp, 1960

  • Brown T., R. J. Hansen, A. J. Yorra 1957 Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral disc. J. Bone Joint Surg. Am. 39A(5), 1135–1164

    PubMed  Google Scholar 

  • Bunge M. B., D. D. Pearse 2003 Transplantation strategies to promote repair of the injured spinal cord. J. Rehabil. Res. Dev. 40(4 Suppl 1), 55–62

    Article  PubMed  Google Scholar 

  • Bunge R. P., W. R. Puckett, J. L. Becerra, A. Marcillo, R. M. Quencer 1993 Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv. Neurol. 59, 75–89

    PubMed  CAS  Google Scholar 

  • Chang G. L., T. K. Hung, A. Bleyaert, P. J. Jannetta 1981 Stress–strain measurement of the spinal cord of puppies and their neurological evaluation. J. Trauma. 21(9), 807–810

    PubMed  CAS  Google Scholar 

  • Chang G. L., T. K. Hung, W. W. Feng 1988 An in-vivo measurement and analysis of viscoelastic properties of the spinal cord of cats. J. Biomech. Eng. 110(2), 115–122

    PubMed  CAS  Google Scholar 

  • Choo A. M., J. Liu, C. K. Lam, M. Dvorak, W. Tetzlaff, T. R. Oxland 2007 Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J. Neurosurg. Spine 6(3), 255–266

    Article  PubMed  Google Scholar 

  • Dall D. M. 1972 Injuries of the cervical spine. I. Does the type of bony injury affect spinal cord recovery? S. Afr. Med. J. 46(30), 1048–1056

    PubMed  CAS  Google Scholar 

  • Fiford, R. J., and L. B. Bilston. Strain distribution and relaxation behaviour of rat spinal cord. In: Advances in Bioengineering, Proceedings of the ASME International Mechanical Engineering Congress, Anaheim, USA, 1998

  • Fiford R. J., L. E. Bilston, P. Waite, J. Lu 2004 A vertebral dislocation model of spinal cord injury in rats. J. Neurotrauma. 21(4), 451–458

    Article  PubMed  CAS  Google Scholar 

  • Galbraith J. A., L. E. Thibault, D. R. Matteson 1993 Mechanical and electrical responses of the squid giant axon to simple elongation. J. Biomech. Eng. 115(1), 13–22

    PubMed  CAS  Google Scholar 

  • Goel V. K., J. D. Clausen 1998 Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23(6), 684–691

    Article  PubMed  CAS  Google Scholar 

  • Haghighi S. S., S. K. Agrawal, D. Surdell Jr., R. Plambeck, S. Agrawal, G. C. Johnson, A. Walker 2000 Effects of methylprednisolone and MK-801 on functional recovery after experimental chronic spinal cord injury. Spinal Cord 38(12), 733–740

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K., T. Yabuki, T. Kurokawa, H. Seki, M. Hogaki, S. Minoura 1977 The anterior and the posterior longitudinal ligaments of the lower cervical spine. J. Anat. 124(3), 633–636

    PubMed  CAS  Google Scholar 

  • Hung T. K., G. L. Chang 1981 Biomechanical and neurological response of the spinal cord of a puppy to uniaxial tension. J. Biomech. Eng. 103(1), 43–47

    PubMed  CAS  Google Scholar 

  • Hung, T. K., G. L. Chang, W. W. Feng, and M. S. Albin. Studying animals to understand spinal cord injuries. SOMA 40–44, 1987

  • Hung T. K., G. L. Chang, H. S. Lin, F. R. Walter, L. Bunegin 1981 Stress–strain relationship of the spinal cord of anesthetized cats. J. Biomech. 14(4), 269–276

    Article  PubMed  CAS  Google Scholar 

  • Hung T. K., H. S. Lin, M. S. Albin, L. Bunegin, P. J. Jannetta 1979 The standardization of experimental impact injury to the spinal cord. Surg. Neurol. 11(6), 470–477

    PubMed  CAS  Google Scholar 

  • Hung T. K., H. S. Lin, L. Bunegin, M. S. Albin 1982 Mechanical and neurological response of cat spinal cord under static loading. Surg. Neurol. 17(3), 213–217

    Article  PubMed  CAS  Google Scholar 

  • Ichihara K., T. Taguchi, I. Sakuramoto, S. Kawano, S. Kawai 2003 Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter. J. Neurosurg. 99(3 Suppl), 278–285

    PubMed  Google Scholar 

  • Ichihara K., T. Taguchi, Y. Shimada, I. Sakuramoto, S. Kawano, S. Kawai 2001 Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J. Neurotrauma. 18(3), 361–367

    Article  PubMed  CAS  Google Scholar 

  • Jensen J. M., R. Shi 2003 Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction. J. Neurophysiol. 90(4), 2334–2340

    Article  PubMed  CAS  Google Scholar 

  • Kakulas B. A. 1984 Pathology of spinal injuries. Cent. Nerv. Syst. Trauma. 1(2), 117–129

    PubMed  CAS  Google Scholar 

  • Kiernan, J. A. Barr’s The Human Nervous System, 7th edn. Philadelphia: Lippincott Williams & Wilkins, 518 pp, 1998

  • King A. I., J. S. Ruan, C. Zhou, W. N. Hardy, T. B. Khalil 1995 Recent advances in biomechanics of brain injury research: a review. J. Neurotrauma 12(4), 651–658

    PubMed  CAS  Google Scholar 

  • King S. W., B. K. Hosler, M. A. King, E. W. Eiselt 2002 Missed cervical spine fracture-dislocations: the importance of clinical and radiographic assessment. J. Manipulative Physiol. Ther. 25(4), 263–269

    Article  PubMed  Google Scholar 

  • Kubo Y., S. Waga, T. Kojima, T. Matsubara, Y. Kuga, Y. Nakagawa 1994 Microsurgical anatomy of the lower cervical spine and cord. Neurosurgery 34(5), 895–890; discussion 901–2

    Article  PubMed  CAS  Google Scholar 

  • Kumaresan S., N. Yoganandan, F. A. Pintar 1999 Finite element analysis of the cervical spine: a material property sensitivity study. Clin. Biomech. (Bristol, Avon) 14(1), 41–53

    Article  CAS  Google Scholar 

  • Leite C. C., B. E. Escobar, C. Bazan III, J. R. Jinkins 1997 MRI of cervical facet dislocation. Neuroradiology 39(8), 583–588

    Article  PubMed  CAS  Google Scholar 

  • Maiman D. J., J. Coats, J. B. Myklebust 1989 Cord/spine motion in experimental spinal cord injury. J. Spinal Disord. 2(1), 14–19

    PubMed  CAS  Google Scholar 

  • Maiman D. J., J. B. Myklebust, K. C. Ho, J. Coats 1989 Experimental spinal cord injury produced by axial tension. J. Spinal Disord. 2(1), 6–13

    PubMed  CAS  Google Scholar 

  • Marar B. C. 1974 The pattern of neurological damage as an aid to the diagnosis of the mechanism in cervical-spine injuries. J. Bone Joint Surg. Am. 56(8), 1648–1654

    PubMed  CAS  Google Scholar 

  • Maurel N., F. Lavaste, W. Skalli 1997 A three-dimensional parameterized finite element model of the lower cervical spine. Study of the influence of the posterior articular facets. J. Biomech. 30(9), 921–931

    Article  PubMed  CAS  Google Scholar 

  • Myklebust J. B., F. Pintar, N. Yoganandan, J. F. Cusick, D. Maiman, T. J. Myers, A. Sances Jr. 1988 Tensile strength of spinal ligaments. Spine 13(5), 526–531

    Article  PubMed  CAS  Google Scholar 

  • Nightingale R. W., J. H. McElhaney, W. J. Richardson, T. M. Best, B. S. Myers 1996 Experimental impact injury to the cervical spine: relating motion of the head and the mechanism of injury. J. Bone Joint Surg. Am. 78(3), 412–421

    PubMed  CAS  Google Scholar 

  • Ozawa H., T. Matsumoto, T. Ohashi, M. Sato, S. Kokubun 2001 Comparison of spinal cord gray matter and white matter softness: measurement by pipette aspiration method. J. Neurosurg. 95(2 Suppl), 221–224

    PubMed  CAS  Google Scholar 

  • Panjabi M. M., T. R. Oxland, E. H. Parks 1991 Quantitative anatomy of cervical spine ligaments. Part II. Middle and lower cervical spine. J. Spinal Disord. 4(3), 277–285

    PubMed  CAS  Google Scholar 

  • Panjabi M. M., D. J. Summers, R. R. Pelker, T. Videman, G. E. Friedlaender, W. O. Southwick 1986 Three-dimensional load–displacement curves due to forces on the cervical spine. J. Orthop. Res. 4(2), 152–161

    Article  PubMed  CAS  Google Scholar 

  • Panjabi M. M., A. A. White III 1980 Basic biomechanics of the spine. Neurosurgery 7(1), 76–93

    Article  PubMed  CAS  Google Scholar 

  • Park, J. B., and R. S. Lakes. Biomaterials: An Introduction. 2nd edn. New York: Plenum Press, 394 pp, 1992

  • Przybylski G. J., G. J. Carlin, P. R. Patel, S. L. Woo 1996 Human anterior and posterior cervical longitudinal ligaments possess similar tensile properties. J. Orthop. Res. 14(6), 1005–1008

    Article  PubMed  CAS  Google Scholar 

  • Reid J. D. 1960 Effects of flexion-extension movements of the head and spine upon the spinal cord and nerve roots. J. Neurol. Neurosurg. Psychiatry 23, 214–221

    Article  PubMed  CAS  Google Scholar 

  • Scifert, J., K. Totoribe, V. K. Goel, V. C. Traynelis, and C. Clark. Spinal cord deformation in flexion and extension—a finite element study. In: 22nd Annual EMBS International Conference, Chicago, IL, 2000

  • Shuck L., S. Advani 1972 Rheological response of human brain tissue in shear. J. Bas. Eng. 94, 905–911

    Google Scholar 

  • Silberstein M., K. McLean 1994 Non-contiguous spinal injury: clinical and imaging features, and postulated mechanism. Paraplegia 32(12), 817–823

    PubMed  CAS  Google Scholar 

  • Tator C. H. 1983 Spine–spinal cord relationships in spinal cord trauma. Clin. Neurosurg. 30, 479–494

    PubMed  CAS  Google Scholar 

  • Tencer A. F., B. L. Allen Jr., R. L. Ferguson 1985 A biomechanical study of thoracolumbar spine fractures with bone in the canal. Part III. Mechanical properties of the dura and its tethering ligaments. Spine 10(8), 741–747

    Article  PubMed  CAS  Google Scholar 

  • Tunturi A. R. 1978 Elasticity of the spinal cord, pia, and denticulate ligament in the dog. J. Neurosurg. 48, 975–979

    PubMed  CAS  Google Scholar 

  • Ueno K., J. W. Melvin, L. Li, J. W. Lighthall 1995 Development of tissue level brain injury criteria by finite element analysis. J. Neurotrauma. 12(4), 695–706

    Article  PubMed  CAS  Google Scholar 

  • van Noort R., M. M. Black, T. R. Martin, S. Meanley 1981 A study of the uniaxial mechanical properties of human dura mater preserved in glycerol. Biomaterials 2(1), 41–45

    Article  PubMed  Google Scholar 

  • Wilcox R. K., D. J. Allen, R. M. Hall, D. Limb, D. C. Barton, R. A. Dickson 2004 A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur. Spine J. 13, 481–488

    Article  PubMed  CAS  Google Scholar 

  • Wilcox R. K., T. O. Boerger, D. J. Allen, D. C. Barton, D. Limb, R. A. Dickson, R. M. Hall 2003 A dynamic study of thoracolumbar burst fractures. J. Bone Joint Surg. Am. 85A(11), 2184–2189

    Google Scholar 

  • Yamada, H. In: Strength of Biological Materials, edited by F. G. Evans. Baltimore: The Williams & Wilkins Company, 297 pp, 1970

  • Yoganandan N., S. Kumaresan, F. A. Pintar 2000 Geometric and mechanical properties of human cervical spine ligaments. J. Biomech. Eng. 122(6), 623–629

    Article  PubMed  CAS  Google Scholar 

  • Yoganandan N., F. Pintar, J. Butler, J. Reinartz, A. Sances Jr., S. J. Larson 1989 Dynamic response of human cervical spine ligaments. Spine 14(10), 1102–1110

    Article  PubMed  CAS  Google Scholar 

  • Yoganandan N., F. A. Pintar, D. J. Maiman, J. F. Cusick, A. Sances Jr., P. R. Walsh 1996 Human head–neck biomechanics under axial tension. Med. Eng. Phys. 18(4), 289–294

    Article  PubMed  CAS  Google Scholar 

  • Zhang L., K. H. Yang, A. I. King 2001 Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma. 18(1), 21–30

    Article  PubMed  CAS  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4