Arbogast, K. B., M. T. Prange, D. F. Meaney, and S. S. Margulies. Properties of cerebral gray and white matter undergoing large deformation. In: 7th Injury Prevention Through Biomechanics, Centers for Disease Control, 1997
Bain A. C., D. F. Meaney 2000 Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 122(6), 615–622
Bilston, L. E. Finite element analysis of some cervical spinal cord injury modes. In: Proceedings, International IRCOBI Conference on the Biomechanics of Impact, Goteborg, Sweden, 1998
Bilston L. E., L. E. Thibault 1996 The mechanical properties of the human cervical spinal cord in vitro. Ann. Biomed. Eng. 24(1), 67–74
Breig, A. Biomechanics of the Central Nervous System. Chicago: The Year Book Publishers, Inc., 183 pp, 1960
Brown T., R. J. Hansen, A. J. Yorra 1957 Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral disc. J. Bone Joint Surg. Am. 39A(5), 1135–1164
Bunge M. B., D. D. Pearse 2003 Transplantation strategies to promote repair of the injured spinal cord. J. Rehabil. Res. Dev. 40(4 Suppl 1), 55–62
Bunge R. P., W. R. Puckett, J. L. Becerra, A. Marcillo, R. M. Quencer 1993 Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination. Adv. Neurol. 59, 75–89
Chang G. L., T. K. Hung, A. Bleyaert, P. J. Jannetta 1981 Stress–strain measurement of the spinal cord of puppies and their neurological evaluation. J. Trauma. 21(9), 807–810
Chang G. L., T. K. Hung, W. W. Feng 1988 An in-vivo measurement and analysis of viscoelastic properties of the spinal cord of cats. J. Biomech. Eng. 110(2), 115–122
Choo A. M., J. Liu, C. K. Lam, M. Dvorak, W. Tetzlaff, T. R. Oxland 2007 Contusion, dislocation, and distraction: primary hemorrhage and membrane permeability in distinct mechanisms of spinal cord injury. J. Neurosurg. Spine 6(3), 255–266
Dall D. M. 1972 Injuries of the cervical spine. I. Does the type of bony injury affect spinal cord recovery? S. Afr. Med. J. 46(30), 1048–1056
Fiford, R. J., and L. B. Bilston. Strain distribution and relaxation behaviour of rat spinal cord. In: Advances in Bioengineering, Proceedings of the ASME International Mechanical Engineering Congress, Anaheim, USA, 1998
Fiford R. J., L. E. Bilston, P. Waite, J. Lu 2004 A vertebral dislocation model of spinal cord injury in rats. J. Neurotrauma. 21(4), 451–458
Galbraith J. A., L. E. Thibault, D. R. Matteson 1993 Mechanical and electrical responses of the squid giant axon to simple elongation. J. Biomech. Eng. 115(1), 13–22
Goel V. K., J. D. Clausen 1998 Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine 23(6), 684–691
Haghighi S. S., S. K. Agrawal, D. Surdell Jr., R. Plambeck, S. Agrawal, G. C. Johnson, A. Walker 2000 Effects of methylprednisolone and MK-801 on functional recovery after experimental chronic spinal cord injury. Spinal Cord 38(12), 733–740
Hayashi K., T. Yabuki, T. Kurokawa, H. Seki, M. Hogaki, S. Minoura 1977 The anterior and the posterior longitudinal ligaments of the lower cervical spine. J. Anat. 124(3), 633–636
Hung T. K., G. L. Chang 1981 Biomechanical and neurological response of the spinal cord of a puppy to uniaxial tension. J. Biomech. Eng. 103(1), 43–47
Hung, T. K., G. L. Chang, W. W. Feng, and M. S. Albin. Studying animals to understand spinal cord injuries. SOMA 40–44, 1987
Hung T. K., G. L. Chang, H. S. Lin, F. R. Walter, L. Bunegin 1981 Stress–strain relationship of the spinal cord of anesthetized cats. J. Biomech. 14(4), 269–276
Hung T. K., H. S. Lin, M. S. Albin, L. Bunegin, P. J. Jannetta 1979 The standardization of experimental impact injury to the spinal cord. Surg. Neurol. 11(6), 470–477
Hung T. K., H. S. Lin, L. Bunegin, M. S. Albin 1982 Mechanical and neurological response of cat spinal cord under static loading. Surg. Neurol. 17(3), 213–217
Ichihara K., T. Taguchi, I. Sakuramoto, S. Kawano, S. Kawai 2003 Mechanism of the spinal cord injury and the cervical spondylotic myelopathy: new approach based on the mechanical features of the spinal cord white and gray matter. J. Neurosurg. 99(3 Suppl), 278–285
Ichihara K., T. Taguchi, Y. Shimada, I. Sakuramoto, S. Kawano, S. Kawai 2001 Gray matter of the bovine cervical spinal cord is mechanically more rigid and fragile than the white matter. J. Neurotrauma. 18(3), 361–367
Jensen J. M., R. Shi 2003 Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction. J. Neurophysiol. 90(4), 2334–2340
Kakulas B. A. 1984 Pathology of spinal injuries. Cent. Nerv. Syst. Trauma. 1(2), 117–129
Kiernan, J. A. Barr’s The Human Nervous System, 7th edn. Philadelphia: Lippincott Williams & Wilkins, 518 pp, 1998
King A. I., J. S. Ruan, C. Zhou, W. N. Hardy, T. B. Khalil 1995 Recent advances in biomechanics of brain injury research: a review. J. Neurotrauma 12(4), 651–658
King S. W., B. K. Hosler, M. A. King, E. W. Eiselt 2002 Missed cervical spine fracture-dislocations: the importance of clinical and radiographic assessment. J. Manipulative Physiol. Ther. 25(4), 263–269
Kubo Y., S. Waga, T. Kojima, T. Matsubara, Y. Kuga, Y. Nakagawa 1994 Microsurgical anatomy of the lower cervical spine and cord. Neurosurgery 34(5), 895–890; discussion 901–2
Kumaresan S., N. Yoganandan, F. A. Pintar 1999 Finite element analysis of the cervical spine: a material property sensitivity study. Clin. Biomech. (Bristol, Avon) 14(1), 41–53
Leite C. C., B. E. Escobar, C. Bazan III, J. R. Jinkins 1997 MRI of cervical facet dislocation. Neuroradiology 39(8), 583–588
Maiman D. J., J. Coats, J. B. Myklebust 1989 Cord/spine motion in experimental spinal cord injury. J. Spinal Disord. 2(1), 14–19
Maiman D. J., J. B. Myklebust, K. C. Ho, J. Coats 1989 Experimental spinal cord injury produced by axial tension. J. Spinal Disord. 2(1), 6–13
Marar B. C. 1974 The pattern of neurological damage as an aid to the diagnosis of the mechanism in cervical-spine injuries. J. Bone Joint Surg. Am. 56(8), 1648–1654
Maurel N., F. Lavaste, W. Skalli 1997 A three-dimensional parameterized finite element model of the lower cervical spine. Study of the influence of the posterior articular facets. J. Biomech. 30(9), 921–931
Myklebust J. B., F. Pintar, N. Yoganandan, J. F. Cusick, D. Maiman, T. J. Myers, A. Sances Jr. 1988 Tensile strength of spinal ligaments. Spine 13(5), 526–531
Nightingale R. W., J. H. McElhaney, W. J. Richardson, T. M. Best, B. S. Myers 1996 Experimental impact injury to the cervical spine: relating motion of the head and the mechanism of injury. J. Bone Joint Surg. Am. 78(3), 412–421
Ozawa H., T. Matsumoto, T. Ohashi, M. Sato, S. Kokubun 2001 Comparison of spinal cord gray matter and white matter softness: measurement by pipette aspiration method. J. Neurosurg. 95(2 Suppl), 221–224
Panjabi M. M., T. R. Oxland, E. H. Parks 1991 Quantitative anatomy of cervical spine ligaments. Part II. Middle and lower cervical spine. J. Spinal Disord. 4(3), 277–285
Panjabi M. M., D. J. Summers, R. R. Pelker, T. Videman, G. E. Friedlaender, W. O. Southwick 1986 Three-dimensional load–displacement curves due to forces on the cervical spine. J. Orthop. Res. 4(2), 152–161
Panjabi M. M., A. A. White III 1980 Basic biomechanics of the spine. Neurosurgery 7(1), 76–93
Park, J. B., and R. S. Lakes. Biomaterials: An Introduction. 2nd edn. New York: Plenum Press, 394 pp, 1992
Przybylski G. J., G. J. Carlin, P. R. Patel, S. L. Woo 1996 Human anterior and posterior cervical longitudinal ligaments possess similar tensile properties. J. Orthop. Res. 14(6), 1005–1008
Reid J. D. 1960 Effects of flexion-extension movements of the head and spine upon the spinal cord and nerve roots. J. Neurol. Neurosurg. Psychiatry 23, 214–221
Scifert, J., K. Totoribe, V. K. Goel, V. C. Traynelis, and C. Clark. Spinal cord deformation in flexion and extension—a finite element study. In: 22nd Annual EMBS International Conference, Chicago, IL, 2000
Shuck L., S. Advani 1972 Rheological response of human brain tissue in shear. J. Bas. Eng. 94, 905–911
Silberstein M., K. McLean 1994 Non-contiguous spinal injury: clinical and imaging features, and postulated mechanism. Paraplegia 32(12), 817–823
Tator C. H. 1983 Spine–spinal cord relationships in spinal cord trauma. Clin. Neurosurg. 30, 479–494
Tencer A. F., B. L. Allen Jr., R. L. Ferguson 1985 A biomechanical study of thoracolumbar spine fractures with bone in the canal. Part III. Mechanical properties of the dura and its tethering ligaments. Spine 10(8), 741–747
Tunturi A. R. 1978 Elasticity of the spinal cord, pia, and denticulate ligament in the dog. J. Neurosurg. 48, 975–979
Ueno K., J. W. Melvin, L. Li, J. W. Lighthall 1995 Development of tissue level brain injury criteria by finite element analysis. J. Neurotrauma. 12(4), 695–706
van Noort R., M. M. Black, T. R. Martin, S. Meanley 1981 A study of the uniaxial mechanical properties of human dura mater preserved in glycerol. Biomaterials 2(1), 41–45
Wilcox R. K., D. J. Allen, R. M. Hall, D. Limb, D. C. Barton, R. A. Dickson 2004 A dynamic investigation of the burst fracture process using a combined experimental and finite element approach. Eur. Spine J. 13, 481–488
Wilcox R. K., T. O. Boerger, D. J. Allen, D. C. Barton, D. Limb, R. A. Dickson, R. M. Hall 2003 A dynamic study of thoracolumbar burst fractures. J. Bone Joint Surg. Am. 85A(11), 2184–2189
Yamada, H. In: Strength of Biological Materials, edited by F. G. Evans. Baltimore: The Williams & Wilkins Company, 297 pp, 1970
Yoganandan N., S. Kumaresan, F. A. Pintar 2000 Geometric and mechanical properties of human cervical spine ligaments. J. Biomech. Eng. 122(6), 623–629
Yoganandan N., F. Pintar, J. Butler, J. Reinartz, A. Sances Jr., S. J. Larson 1989 Dynamic response of human cervical spine ligaments. Spine 14(10), 1102–1110
Yoganandan N., F. A. Pintar, D. J. Maiman, J. F. Cusick, A. Sances Jr., P. R. Walsh 1996 Human head–neck biomechanics under axial tension. Med. Eng. Phys. 18(4), 289–294
Zhang L., K. H. Yang, A. I. King 2001 Comparison of brain responses between frontal and lateral impacts by finite element modeling. J. Neurotrauma. 18(1), 21–30
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4