Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell, 3rd edn., New York: Garland, 1994.
Bedlack, R. S., M. Wei, S. H. Fox, E. Gross, and L. M. Loew. Distinct electric potentials in soma and neurite membranes. Neuron 13:1187–1193, 1994.
Buitenweg, J. R., W. L. Rutten, and E. Marani. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode. IEEE Trans. Biomed. Eng. 50:501–509, 2003.
Cheng, D. K. L., L. Tung, and E. A. Sobie. Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. 277:H351–H362, 1999.
Fear, E. C., and M. A. Stuchly. Biological cells with gap junctions in low-frequency electric fields. IEEE Trans. Biomed. Eng. 45:856–866, 1998.
Fear, E. C., and M. A. Stuchly. Modeling assemblies of biological cells exposed to electric fields. IEEE Trans. Biomed. Eng. 45:1259–1271, 1998.
Gabriel, B., and J. Teissié. Fluorescence imaging in the millisecond time range of membrane electropermeabilization of single cell using a rapid ultra-low-light intensifying detection system. Eur. Biophys. J. 27:291–298, 1998.
Gascoyne, P. R. C., R. Pethig, J. P. H. Burt, and F. F. Becker. Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis. Biochim. Biophys. Acta. 1146:119–126, 1993.
Gimsa, J., and D. Wachner. Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells. Biophys. J. 81:1888–1896, 2001.
Gimsa, J., and D. Wachner. On the analytical description of transmembrane voltage induced on spheroidal cells with zero membrane conductance. Eur. Biophys. J. 30:463–466, 2001.
Golzio, M., L. Mazzolini, P. Moller, M. P. Rols, and J. Teissie. Inhibition of gene expression in mice muscle by in vivo electrically mediated siRNA delivery. Gene Therapy 12:246–251, 2005.
Gowrishankar, T. R., and J. C. Weaver. An approach to electrical modeling of single and multiple cells. Proc. Natl. Acad. Sci. U.S.A. 100:3203–3208, 2003.
Gross, D., L. M. Loew, and W. Webb. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys. J. 50:339–348, 1986.
Harris, C. M., and D. B. Kell. The radio-frequency dielectric properties of yeast cells measured with a rapid, automated, frequency-domain dielectric spectrometer. Bioelectrochem. Bioenerg. 11:15–28, 1983.
Hassan, N., I. Chatterjee, N. G. Publicover, and G. L. Craviso. Mapping membrane-potential perturbations of chromaffin cells exposed to electric fields. IEEE Trans. Plasma Sci. 30:1516–1524, 2002.
Heller, R., R. Gilbert, and M. J. Jaroszeski. Clinical applications of electrochemotherapy. Adv. Drug. Deliv. Rev. 35:119–129, 1999.
Hibino, M., H. Itoh, and K. Kinosita. Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys. J. 64:1789–1800, 1993.
Hibino, M., M. Shigemori, H. Itoh, K. Nagayama, and K. Kinosita. Membrane conductance of an electroporated cell analyzed by submicrosecond imaging of transmembrane potential. Biophys. J. 59:209–220, 1991.
Huang, X., D. Nguyen, D. W. Greve, and M. M. Domach. Simulation of microelectrode impedance changes due to cell growth. IEEE Sensors J. 4:576–583, 2004.
Knisley, S. B., T. F. Blitchington, B. C. Hill, A. O. Grant, W. M. Smith, T. C. Pilkington, and R. E. Ideker. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ. Res. 72:255–268, 1993.
Kotnik, T., F. Bobanović, and D. Miklavčič. Sensitivity of transmembrane voltage induced by applied electric fields – a theoretical analysis. Bioelectrochem. Bioenerg. 43:285–291, 1997.
Kotnik, T., and D. Miklavčič. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79:670–679, 2000.
Kotnik, T., and D. Miklavčič. Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans. Biomed. Eng. 47:1074–1081, 2000.
Lee, D. C., and W. M. Grill. Polarization of a spherical cell in a nonuniform extracellular electric field. Anal. Biomed. Eng. 33:603–615, 2005.
Loew, L. M. Voltage sensitive dyes: Measurement of membrane potentials induced by DC and AC electric fields. Bioelectromagnetics Suppl. 1:179–189, 1992.
Lojewska, Z., D. L. Franks, B. Ehrenberg, and L. M. Loew. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys. J. 56:121–128, 1989.
Miklavčič, D., G. Pucihar, M. Pavlovec, S. Ribarič, M. Mali, A. Maček-Lebar, M. Petkovšek, J. Nastran, S. Kranjc, M. Čemažar, and G. Serša. The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy. Bioelectrochemistry 65:121–128, 2005.
Miller, C. E., and C. S. Henriquez. Three-dimensional finite element solution for biopotentials: Erythrocyte in an applied field. IEEE Trans. Biomed. Eng. 35:712–718, 1988.
Mir, L. M., and S. Orlowski. Mechanisms of electrochemotherapy. Adv. Drug Deliv. Rev. 35:107–118, 1999.
Montana, V., D. L. Farkas, and L. M. Loew. Dual-wavelength ratiometric fluorescence measurements of membrane-potential. Biochemistry 28:4536–4539, 1989.
Neumann, E., S. Kakorin, and K. Toensing. Fundamentals of electroporative delivery of drugs and genes. Bioelectrochem. Bioenerg. 48:3–16, 1999.
Pavlin, M., N. Pavšelj, and D. Miklavčič. Dependence of induced transmembrane potential on cell density, arrangement, and cell position inside a cell system. IEEE Trans. Biomed. Eng. 49:605–612, 2002.
Pucihar, G., T. Kotnik, M. Kandušer, and D. Miklavčič. The influence of medium conductivity on electropermeabilization and survival of cells in vitro. Bioelectrochemistry 54:107–115, 2001.
Rols, M. P., C. Delteil, M. Golzio, and J. Teissié. Control by ATP and ADP of voltage-induced mammalian-cell-membrane permeabilization, gene transfer and resulting expression. Eur. J. Biochem. 254:382–388, 1998.
Schwan, H. P. Electrical properties of tissue and cell suspensions. Adv. Biol. Med. Phys. 5:147–209, 1957.
Serša, G., M. Čemažar, and Z. Rudolf. Electrochemotherapy: advantages and drawbacks in treatment of cancer patients. Cancer Ther. 1:133–142, 2003.
Somiari, S., J. G. Malone, J. J. Drabick, R. A. Gilbert, R. Heller, M. J. Jaroszeski, and R. W. Malone. Theory and in vivo application of electroporative gene delivery. Mol. Ther. 2:178–187, 2000.
Stewart, D. A., T. R. Gowrishankar, and J. C. Weaver. Transport lattice approach to describing cell electroporation: use of a local asymptotic model. IEEE Trans. Plasma Sci. 32:1696–1708, 2004.
Susil, R., D. Šemrov, and D. Miklavčič. Electric field induced transmembrane potential depends on cell density and organization. Electro. Magnetobiol. 17:391–399, 1998.
Šatkauskas, S., M. F. Bureau, M. Puc, A. Mahfoudi, D. Scherman, D. Miklavčič, and L. M. Mir. Mechanisms of in vivo DNA electrotransfer: respective contributions of cell electropermeabilization and DNA electrophoresis. Mol. Ther. 5:133–140, 2002.
Šel, D., D. Cukjati, D. Batiuskaite, T. Slivnik, L. M. Mir, and D. Miklavčič. Sequential finite element model of tissue electropermeabilization. IEEE Trans. Biomed. Eng. 52:816–827, 2005.
Teissie, J., and M. P. Rols. An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys. J. 65:409–413, 1993.
Teissié, J., N. Eynard, B. Gabriel, and M. P. Rols. Electropermeabilization of cell membranes. Adv. Drug Deliver Rev. 35:3–19, 1999.
Tsong, T. Y. Electroporation of cell membranes. Biophys. J. 60:297–306, 1991.
Valič, B., M. Golzio, M. Pavlin, A. Schatz, C. Faurie, B. Gabriel, J. Teissié, M. P. Rols, and D. Miklavčič. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment. Eur. Biophys. J. 32:519–528, 2003.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4