A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-9070-8 below:

Trans-Endplate Nucleotomy Increases Deformation and Creep Response in Axial Loading

REFERENCES
  1. Adams, M. A., B. J. Freeman, H. P. Morrison, I. W. Nelson, and P. Dolan, Mechanical initiation of intervertebral disc degeneration. Spine 25(13):1625–1636, 2000.

    Article  PubMed  CAS  Google Scholar 

  2. Alini, M., P. J. Roughley, J. Antoniou, T. Stoll, and M. Aebi, A biological approach to treating disc degeneration: Not for today, but maybe for tomorrow. Eur. Spine J. 11(Suppl 2):S215–S220, 2002.

    PubMed  Google Scholar 

  3. Argoubi, M., and A. Shirazi-Adl. Poroelastic creep response analysis of a lumbar motion segment in compression. J. Biomech. 29(10):1331–1339, 1996.

    Article  PubMed  CAS  Google Scholar 

  4. Bao, Q. B., and H. A. Yuan. New technologies in spine: Nucleus replacement. Spine 27(11):1245–1247, 2002.

    Article  PubMed  Google Scholar 

  5. Bradford, D. S., T. R. Oegema, Jr., K. M. Cooper, K. Wakano, and E. Y. Chao, Chymopapain, chemonucleolysis, and nucleus pulposus regeneration. A biochemical and biomechanical study. Spine 9(2):135–147, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Brinckmann, P., and H. Grootenboer. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine 19(6):643–646, 1991.

    Google Scholar 

  7. Brinkmann, P. Injury of the annulus fibrosus and disc protrusions: An in vitro investigation on human lumbar discs. Spine 11(2):149–153, 1986.

    Article  Google Scholar 

  8. Diwan, A. D., H. K. Parvataneni, S. N. Khan, H. S. Sandhu, F. P. Girardi, and F. P. Cammisa, Jr., Current concepts in intervertebral disc restoration. Orthop. Clin. North Am. 31(3):453–464, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Ebara, S., J. C. Iatridis, L. A. Setton, R. J. Foster, V. C. Mow, and M. Weidenbaum, Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21(4):452–461, 1996.

    Article  PubMed  CAS  Google Scholar 

  10. Elliott, D. M., and J. J. Sarver. Young investigator award winner: Validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine 29(7):713–722, 2004.

    Article  PubMed  Google Scholar 

  11. Elliott, D. M., and L. A. Setton. Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: Experimental measurement and material model predictions. J. Biomech. Eng. 123:256–263, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Eysel, P., J. Rompe, R. Schoenmayr, and J. Zoellner, Biomechanical behaviour of a prosthetic lumbar nucleus. Acta Neurochir (Wien) 141(10):1083–1087, 1999.

    Article  CAS  Google Scholar 

  13. Furlong, D. R., and A. N. Palazotto. A finite element analysis of the influence of surgical herniation on the viscoelastic properties of the intervertebral disc. J. Biomech. 16(10):785–795, 1983.

    Article  PubMed  CAS  Google Scholar 

  14. Goel, V. K., B. T. Monroe, L. G. Gillbertson, and P. Brinckmann, Interlaminar shear stresses and laminae separation in a disc; Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine 20(6):689–698, 1995.

    Article  PubMed  CAS  Google Scholar 

  15. Goel, V. K., K. Nishiyama, J. N. Weinstein, and Y. K. Liu, Mechanical properties of lumbar spinal motion segments as affected by partial disc removal. Spine 11(10):1008–1012, 1986.

    Article  PubMed  CAS  Google Scholar 

  16. Hasegawa, K., C. H. Turner, J. Chen, and D. B. Burr, Effect of disc lesion on microdamage accumulation in lumbar vertebrae under cyclic compression loading. Clin. Orthop. Relat. Res. 311:190–198, 1995.

    PubMed  Google Scholar 

  17. Hickey, D. S., and D. W. L. Hukins. Relation between the structure of the annulus fibrosus and the function and failure of the intervertebral disc. Spine 5(2):106–116, 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Hukins, D. W. A simple model for the function of proteoglycans and collagen in the response to compression of the intervertebral disc. Proc. R. Soc. Lond., B, Biol. Sci. 249(1326):281–285, 1992.

    Article  CAS  Google Scholar 

  19. Iatridis, J. C., and I. ap Gwynn. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J. Biomech. 37(8):1165–1175, 2004.

    Article  PubMed  Google Scholar 

  20. Iatridis, J. C., L. A. Setton, M. Weidenbaum, and V. C. Mow, Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J. Orthop. Res. 15:318–322, 1997.

    Article  PubMed  CAS  Google Scholar 

  21. Ishihara, H., H. Tsuji, N. Hirano, H. Ohshima, and N. Terahata, Biorheological responses of the intact and nucleotomized intervertebral discs to compressive, tensile, and vibratory stresses. Clin. Biomech. 8:250–254, 1993.

    Article  Google Scholar 

  22. Johannessen, W. and D. M. Elliott. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine, in review.

  23. Johannessen, W., E. J. Vresilovic, and D. M. Elliott, Effects of endplate nucleotomy and cyclic compressive loading on lumbar disc mechanics in vitro. Clin. Biomech., in review.

  24. Johannessen, W., E. J. Vresilivic, A. C. Wright, and D. M. Elliott, Effects of partial nucleotomy and repetitive loading on intervertebral disc mechanics. Proceedings of the Summer Bioengineering Conference, 2003.

  25. Johannessen, W., et al. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Ann. Biomed. Eng. 32:70–76, 2004.

    Article  PubMed  Google Scholar 

  26. Joshi, A., G. Fussell, J. Thomas, A. Hsuan, A. Lowman, A. Karduna, E. Vresilovic, and M. Marcolongo. Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials 27(2):176–184, 2006.

    Article  PubMed  CAS  Google Scholar 

  27. Kazarian, L. E. Creep characteristics of the human spinal column. Orthop. Clin. North Am. 6(1):3–18, 1975.

    PubMed  CAS  Google Scholar 

  28. Keller, T. S., D. M. Spengler, and T. H. Hansson. Mechanical behavior of the human lumbar spine. I. Creep analysis during static compressive loading. J. Orthop. Res. 5(4):467–478, 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Keller, T. S., D. M. Spengler, and T. H. Hansson. In vivo creep behavior of the normal and degenerated porcine intervertebral disk: A preliminary report. J. Spinal Disord.1(4):267–278, 1988.

    PubMed  CAS  Google Scholar 

  30. Kuroki, H., V. K. Goel, S. A. Holekamp, N. A. Ebraheim, S. Kubo, and N. Tajima. Contributions of flexion-extension cyclic loads to the lumbar spinal segment stability following different discectomy procedures. Spine 29(3):E39–E46, 2004.

    Article  PubMed  Google Scholar 

  31. Laible, J. P., D. S. Pflaster, M. H. Krang, B. R. Simon, and L. D. Haugh. Poroelastic-swelling finite element model with application to the intervertebral disc. Spine 18(5):659–670, 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Markolf, K. L., and J. M. Morris. Structural components of the intervertebral disc. J. Bone Joint Surg. 56A(4):675–687, 1974.

    Google Scholar 

  33. Meakin, J. R., T. W. Redpath, and D. W. Hukins. The effect of partial removal of the nucleus pulposus from the intervertebral disc on the response of the human annulus fibrosus to compression. Clin. Biomech. (Bristol, Avon) 16(2):121–128, 2001.

    Article  CAS  Google Scholar 

  34. Meakin, J. R., T. W. Redpath, and D. W. Hukins. The effect of partial removal of the nucleus pulposus from the intervertebral disc on the response of the human annulus fibrosus to compression. Clin. Biomech. 16(2):121–128, 2001.

    Article  CAS  Google Scholar 

  35. Meakin, J. R., and D. W. Hukins. Effect of removing the nucleus pulposus on the deformation of the annulus fibrosus during compression of the intervertebral disc. J. Biomech. 33(5):575–580, 2000.

    Article  PubMed  CAS  Google Scholar 

  36. Mimura, M., M. M. Panjabi, T. R. Oxland, J. J. Crisco, I. Yamamoto, and A. Vasavada. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19(12):1371–1380, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Natarajan, R. N., J. H. Ke, and G. B. J. Andersson. A model to study the disc degeneration process. Spine 19(3):259–265, 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Natarajan, R. N., J. R. Williams, and G. B. Andersson. Recent advances in analytical modeling of lumbar disc degeneration. Spine 29(23):2733–2741, 2004.

    Article  PubMed  Google Scholar 

  39. Natarajan, R. N., J. R. Williams, and G. B. Andersson. Effect of annular incision type on the change in biomechanical properties in a herniated lumbar intervertebral disc. J. Biomech. Eng. 124(2):229–236, 2002.

    Article  PubMed  CAS  Google Scholar 

  40. O'Connell, G. D., E. J. Vresilovic, and D. M. Elliott. Comparative intervertebral disc anatomy across several animal species. Transactions of the Orthopaedic Research Society, 52nd Annual Meeting, in review.

  41. Oxland, T. R., and M. M. Panjabi. The onset and progression of spinal injury: A demonstration of neutral zone sensitivity. J. Biomech. 25(10):1165–1172, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Panjabi, M. M., M. H. Krag, and T. Q. Chung. Effects of disc injury on mechanical behavior of the human spine. Spine 9(7):707–713, 1984.

    Article  PubMed  CAS  Google Scholar 

  43. Panjabi, M. M., M. H. Krag, and T. Q. Chung. Effects of disc injury on mechanical behavior of the human spine. Spine 9(7):707–713, 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Sarver, J. J., and D. M. Elliott. Mechanical differences between lumbar and tail discs in the mouse. J. Orthop. Res. 23(1):150–155, 2005.

    Article  PubMed  Google Scholar 

  45. Sato, K., S. Kikuchi, and T. Yonezawa. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24(23):2468–2474, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Seroussi, R. E., M. H. Krang, D. L. Muller, and M. H. Pope. Internal deformations of intact and denucleated human lumbar discs subjected to compression, flexion, and extension loads. J. Orthop. Res. 7:122–131, 1989.

    Article  PubMed  CAS  Google Scholar 

  47. Seroussi, R. E., M. H. Krang, D. L. Muller, and M. H. Pope. Internal deformations of intact and denucleated human lumbar discs subjected to compression, flexion, and extension loads. J. Orthop. Res. 7(1):122–131, 1989.

    Article  PubMed  CAS  Google Scholar 

  48. Setton, L. A., and J. Chen. Cell mechanics and mechanobiology in the intervertebral disc. Spine 29(23):2710–2723, 2004.

    Article  PubMed  Google Scholar 

  49. Shea, M., T. Y. Takeuchi, R. H. Wittenberg, A. A. White, and W. C. Hayes. Comparison of the effects of automated percutaneous discectomy and conventional discectomy on intradiscal pressure, disc geometry, and stiffness. J. Spinal Disord. 7(4):317–325, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Shirazi-Adl, A. Finite element simulation of changes in the fluid content of human lumbar discs. Spine 17(2):206–212, 1992.

    Article  PubMed  CAS  Google Scholar 

  51. Stokes, I. A., and J. C. Iatridis. Mechanical conditions that accelerate intervertebral disc degeneration: Overload versus immobilization. Spine 29(23):2724–2732, 2004.

    Article  PubMed  Google Scholar 

  52. Urban, J. P. G., and J. F. McMullin. Swelling pressure of the lumbar intervertebral discs: Influence of age, spinal level, composition, and degeneration. Spine 13(2):179–187, 1988.

    Article  PubMed  CAS  Google Scholar 

  53. Virgin, W. J. Experimental investigations into the physical properties of the intervertebral disc. J. Bone Joint Surg. 33B(4):607–611, 1951.

    Google Scholar 

  54. Wilke, H. J., S. Kavanagh, S. Neller, C. Haid, and L. E. Claes. Effect of a prosthetic disc nucleus on the mobility and disc height of the L4-5 intervertebral disc postnucleotomy. J. Neurosurg. 95(2 Suppl):208–214, 2001.

    PubMed  CAS  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4