Argoubi, M., and A. Shirazi-Adl. Poroelastic creep response analysis of a lumbar motion segment in compression. J. Biomech. 29(10):1331–1339, 1996.
Berry, J. L., J. M. Moran, W. S. Berg, and A. D. Steffee. A morphometric study of human lumbar and selected thoracic vertebrae. Spine 12(4):362–367, 1987.
Brickley-Parsons, D., and M. J. Glimcher. Is the chemistry of collagen in intervertebral discs an expression of Wolff's law. Spine 9(2):148–163, 1984.
Brolin, K., and P. Halldin. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine 29(4):376–385, 2004.
Brown, T. D., and M. S. Vrahas. The apparent elastic modulus of the juxtarticular subchondral bone of the femoral head. J. Orthop. Res. 2(1):32–38, 1984.
Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. 203:71–75, 1989.
Crawford, R. P., and T. M. Keaveny. Relationship between axial and bending behaviors of the human thoracolumbar vertebra. Spine 29(20):2248–2255, 2004.
Dimar, J. R., M. J. Voor, Y. M. Zhang, and S. D. Glassman. A human cadaver model for determination of pathologic fracture threshold resulting from tumors destruction of the vertebral body. Spine 23(11):1209–1214, 1998.
Ebihara, H., M. Ito, K. Abumi, H. Taneichi, Y. Kotani, A. Minami, and K. Kaneda. A biomechanical analysis of metastatic vertebral collapse of the thoracic spine: A sheep model study. Spine 29(9):994–999, 2004.
Granhed, H., R. Jonson, and T. Hansson. Mineral content and strength of lumbar vertebrae. A cadaver study. Acta Orthop. Scand. 60(1):105–109, 1989.
Han, J. S., V. K. Goel, J. Y. Ahn, J. Winterbottom, D. McGowan, J. Weinstein, and T. Cook. Loads in the spinal structures during lifting: Development of a three-dimensional comprehensive biomechanical model. Eur. Spine J. 4(3):153–168, 1995.
Holdsworth, F. W. Fractures, dislocations, and fracture-dislocations of the spine. J. Bone Joint Surg. 45B(1):6–20, 1963.
Hong, J. H., J. H. Ah, T. H. Lim, and H. S. An. Correlation among permeability, apparent density, and porosity of human lumbar vertebral trabecular bone. In: Proceedings of the Transactions of the 44th Annual Meeting, Orthopaedic Research Society, New Orleans, 1998.
Jemal, A., R. C. Tiwari, T. Murray, A. Ghofoor, A. Samuels, E. J. Feuer, and M. J. Thun. Cancer statistics. CA A Cancer J. Clin. 54:8–29, 2004.
Kopperdahl, D. L., and T. M. Keaveny. Yield strain behavior of trabecular bone. J. Biomech. 31(7):601–608, 1998.
Lotz, J. C., P. A. Glazer, and E. C. Gryler. Tensile properties of the human vertebral endplate. In: Proccedings of the 22nd Annual Symposium of the International Society for the Study of the Lumbar Spine, Helsinki, Finland, 1995.
McCutchen, C. W. The friction properties of animal joints. Wear 5(1):1–17, 1962.
McGill, S. M., and R.W. Norman. Partitioning of the L4–L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11(7):666–678, 1986.
Miller, J. A. A., A. B. Schultz, D. N. Warwick, and D. L. Spencer. Mechanical properties of lumbar spine motion segments under large loads. J. Biomech. 19(1):79–84, 1986.
Mosekilde, L., L. Mosekilde, and C. C. Danielsen. Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8(2):79–85, 1987.
Nauman, E. A., K. E. Fong, and T. M. Keaveny. Dependence of intertrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27(4):517–524, 1999.
Oda, I., K. Abumi, D. Lu, Y. Shono, and K. Keneda. Biomechanical role of the posterior elements, costovertebral joints, and ribcage in the stability of the thoracic spine. Spine 21(12):1423–1433, 1996.
Osvalder, A. L., P. Neumann, P. Lovsund, and A. Nordwall. Ultimate strength of the lumbar spine in flexion—An in vitro study. J. Biomech. 23(5):453–460, 1990.
Osvalder, A. L., P. Neumann, P. Lovsund, and A. Nordwall. A method for studying the biomechanical load response of the (in vitro) lumbar spine under dynamic flexion-shear loads. J. Biomech. 26(10):1227–1236, 1993.
Panjabi, M. M., T. Oxland, K. Takata, V. Goel, J. Duranceau, and M. Krag. Articular facets of the human spine. Quantitative three-dimensional anatomy. Spine 18(10):1298–1310, 1993.
Panjabi, M. M., T. R. Oxland, I. Yamamoto, and J. J. Crisco. Mechanical behaviour of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. 76-A(3):413–424, 1994.
Panjabi, M. M., K. Takata, V. Goel, D. Federico, T. Oxland, J. Duranceau, and M. Krag. Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine 16(8):888–901, 1991.
Polikeit, A., L. P. Nolte, and S. J. Ferguson. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis. Spine 28(10):991–996, 2003.
Puttlitz, C. M. A biomechanical investigation of the craniovertebral junction. Doctoral thesis, University of Iowa, 1999.
Roth, S. E., P. Mousavi, J. Finkelstein, E. Chow, H. Kreder, and C. M. Whyne. Metastatic burst fracture risk prediction using biomechanically based equations. Clin. Orthop. Relat. Res. 419:83–90, 2004.
Schaberg, J., and B. J. Gainor. A profile of metastatic carcinoma of the spine. Spine 10(1):19–20, 1985.
Schultz, A., G. Andersson, R. Ortengren, K. Haderspeck, and A. Nachemson. Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J. Bone Joint Surg. Am. 64(5):713–720, 1982.
Shirazi-Adl, A., A. M. Ahmed, and S. C. Shrivastava. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J. Biomech. 19(4):331–350, 1986.
Silva, M. J., J. A. Hipp, D. P. McGowan, T. Takenchi, and W. C. Hayes. Strength reductions of throracic vertebra in the presence of transcortical osseous defects: Effect of defect location, pedicle disruption, and defect size. Eur. Spine J. 2:118–125, 1993.
Silva, M. J., T. M. Keaveny, and W. C. Hayes. Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22(2):140–150, 1997.
Simon, B. R., J. S. S. Wu, M. W. Carlton, L. E. Kazarian, E. P. France, J. H. Evans, and O. C. Zienkiewicz. Poroelastic dynamic structural models of rhesus spinal motion segments. Spine 10(6):494–507, 1985.
Skipor, A. F., J. A. A. Miller, D. A. Spencer, and A. B. Schultz. Stiffness properties and geometry of lumbar spine posterior elements. J. Biomech. 18(11):821–830, 1985.
Takeuchi, T., K. Abumi, Y. Shono, I. Oda, and K. Kaneda. Biomechanical role of the interverteibral disc and costovertebral joint in stability of the thoracic spine. Spine 24(14):1414–1420, 1999.
Taneichi, H., K. Kaneda, N. Takeda, K. Abumi, and S. Satoh. Risk factors and probability of vertebral body collapse in metastases of the thoracic and lumbar spine. Spine 22(3):239–245, 1997.
Tawackoli, W., R. Marco, and M. A. K. Liebschner. The effect of compressive axial preload on the flexibility of the thoracic spine. Spine 29(9):988–993, 2004.
Tencer, A. F., A. M. Ahmed, and D. L. Burke. Some static mechanical properties of the lumbar intervertebral joint, intact and injured. J. Biomech. Eng. 104(3):193–201, 1982.
Tschirhart, C. E., A. Nagpurkar, and C. M. Whyne. Effects of tumor location, shape and surface serration on burst fracture risk in the metastatic spine. J. Biomech. 37(5):653–660, 2004.
Whealan, K. M., S. D. Kwak, J. R. Tedrow, K. Inoue, and B. D. Snyder. Noninvasive imaging predicts failure load of the spine with simulated osteolytic defects. J. Bone Joint Surg. Am. 82(9):1240–1251, 2000.
White, A. A., and M. M. Panjabi. Clinical Biomechanics of the Spine 2nd ed. Philadelphia:JB Lippincott Company, 1992.
Whyne, C. M. Development of guidelines for the prophylactic treatment of metastatically involved vertebral bodies. Doctoral thesis, University of California, Berkley, 1999.
Whyne, C. M., S. S. Hu, and J. C. Lotz. Parametric finite element analysis of vertebral bodies affected by tumors. J. Biomech. 34(10):1317–1324, 2001.
Whyne, C. M., S. S. Hu, and J. C. Lotz. Burst fracture in the metastatically involved spine: Development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model. Spine 28(7):652–660, 2003.
Whyne, C. M., S. S. Hu, K. L. Workman, and J. C. Lotz. Biphasic material properties of lytic bone metastases. Ann. Biomed. Eng. 28(9):1154–1158, 2000.
Wilke, H., A. Rohlmann, S. Neller, M. Schulthei, G. Bergmann, F. Graichen, and L. E. Claes. Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load component sin an internal fixator. Spine 26(6):636–642, 2001.
Wilke, H., P. Neef, B. Hinz, H. Seidel, and L. Claes. Intradiscal pressure together with anthropometric data—Data set for the validation of models. Clin. Biomech. 16(S1):111–126, 2001.
Windhagen, H. J., J. A. Hipp, M. J. Silva, S. J. Lipson, and W. C. Hayes. Predicting failure of thoracic vertebrae with simulated and actual metastatic defects. Clin. Orthop. Relat. Res. 344:313–319, 1997.
Wong, D. A., V. L. Fornasier, and I. MacNab. Spinal metastases: The obvious, the occult, and the impostors. Spine 15(1):1–4, 1990.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4