Bassiouny, H. S., R. H. Song, X. F. Hong, A. Singh, H. Kocharyan, and S. Glagov. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 98:157–163, 1998.
Bendeck, M. P., N. Zempo, A. W. Clowes, R. E. Galardy, and M. A. Reidy. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ. Res. 75:539–545, 1994.
Bernstein L. R., H. Antoniades, and B. R. Zetter. Migration of cultured vascular cells in response to plasma and platelet-derived factors. J. Cell. Sci. 56:71–82, 1982.
Budel, S., A. Schuster, N. Stergiopoulos, J. J. Meister, and J. L. Beny. Role of smooth muscle cells on endothelial cell cytosolic free calcium in porcine coronary arteries. Am. J. Physiol. Heart Circ. Physiol. 281:H1156–H1162, 2001.
Dewey, C. F., Jr., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–184, 1981.
Fulton, D., J. P. Gratton, T. J. McCabe, J. Fontana, Y. Fujio, K. Walsh, T. F. Franke, A. Papapetropoulos, and W. C. Sessa. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399:597–601, 1999.
Galis, Z. S., and J. J. Khatri. Matrix metalloproteinases in vascular remodeling and atherogenesis. The good, the bad, and the ugly. Circ. Res. 90:251–262, 2002.
Galis, Z. S., G. K. Sukhova, M. W. Lark, and P. Libby. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Invest. 94:2493–2503, 1994.
Gurjar, M. V., R. V. Sharma, and R. C. Bhalla. eNOS gene transfer inhibits smooth muscle cell migration and MMP-2 and MMP-9 activity. Arterioscler. Thromb. Vasc. Biol. 19:2871–2877, 1999.
Johnson, C., and Z. Galis. Matrix metalloproteinase-2 and -9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler. Thromb. Vasc. Biol. 24:54–60, 2004.
Kanda, S., M. Kuzuya, M. A. Ramos, T. Koike, K. Yoshino, S. Ikeda, and A. Iguchi. Matrix metalloproteinase and αvβ3 integrin-dependent vascular smooth muscle cell invasion through a type I collagen lattice. Arterioscler. Thromb. Vasc. Biol. 20:998–1005, 2000.
Kataoka, N., S. Ujita, and M. Sato. Effect of flow direction on the morphological responses of cultured bovine aortic endothelial cells. Med. Biol. Eng. Comp. 36:122–128, 1998.
Labarbera, and M. Principles of design of fluid transport systems in zoology. Science 249:992–1000, 1990.
Langille, B. L., F. O’Donnell, Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407, 1986.
Li, Z., J. Froehlich, Z. S. Galis, and E. G. Lkatta. Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 33:116–123, 1999.
Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 285:2035–2042, 1999.
Malek, A. M., G. H. Gibbons, V. J. Dzau, and S. Izumo. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet–derived growth factor B chain in vascular endothelium. J. Clin. Invest. 92:2013–2021, 1993.
Nerem, R. M. Atherosclerosis and the role of wall shear stress In: Flow-Dependent Regulation of Vascular Function, edited by J. A. Bevan, G. Kaley, and G. M. Rubanyi. New York: Oxford, 1995, pp. 300–319.
Ohashi, T., H. Sugawara, T. Matsumoto, and M. Sato. Surface topography measurement and intracellular stress analysis of cultured endothelial cells exposed to fluid shear stress. JSME Int. J. 43:780–786, 2000.
Orbe, J., L. Fernandez, J. A. Rodríguez, G. Rábago, M. Belzunce, A. Monasterio, C. Roncal, and J. A. Páramo. Different expression of MMPs/TIMP-1 in human atherosclerotic lesions. Relation to plaque features and vascular bed. Atherosclrosis 170:269–276, 2003.
Palumbo, R., C. Gaetano, G. Melillo, E. Toschi, A. Remuzzi, and M. C. Capogrossi. Shear stress downregulation of platelet-derived growth factor receptor-β and matrix meatlloprotease-2 is associated with inhibition of smooth muscle cell invasion and migration. Circulation 102:225–230, 2000.
Powell, R. J., J. Bhargave, M. D. Basson, and B. Sumpio. Coculture condition alter endothelial modulation of TGF-β1 activation and smooth muscle growth morphology. Am. J. Physiol. 274:H642–H649, 1998.
Redmond, E. M., J. P. Cullen, P. A. Gahill, J. V. Sitzmann, S. Stefansson, D. A. Lawrence, and S. S. Okada. Endothelial cells inhibit flow-induced smooth muscle cell migration: Role of plasminogen activator inhibitor-1. Circulation 103:597–603, 2001.
Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990’s. Nature 362:801–809, 1993.
Sarkar, R., E. G. Meinberg, J. C. Stanley, D. Gordon, and R. C. Webb. Nitric oxide reversibly inhibits the migration of cultured vascular smooth muscle cells. Circ. Res. 78:225–230, 1996.
Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscope for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.
Uematsu, M., Y. Ohara, J. P. Navas, K. Nishida, T. J. Murphy, R. W. Alexander, and R. M. Nerem. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am. J. Physiol. 269:C1371–C1378, 1995.
Yano, T., H. Kawano, H. Mochizuki, O. Doi, T. Nakamuara, and Y. Saito. Atherosclerotic plaques composed of a large core of foam cells covered with thin fibrous caps in twice-injured carotid arterial specimens obtained from high cholesterol diet-fed rabbits. J. Atheroscler. Thromb. 7:83–90, 2000.
Ziegler, T., R. W. Alexander, and R. M. Nerem. An endothelial cell-smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23:216–225, 1995.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4