A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-9042-0 below:

Slow-Fast Decoupling of the Disparity Convergence Eye Movements Dynamics

In this paper we show how to separate the slow and fast dynamics of the disparity convergence of the eye movements dynamic model. The dynamic equations obtained determine the modified slow dynamics that takes into account the impact of the fast dynamics and the modified fast dynamics that takes into account the impact of the slow dynamics. The slow fast decoupling is achieved by finding analytical solutions of the transformation equations used. The transformed slow and fast subsystems have very simple forms. Having separated the slow and fast dynamics completely, neural control problems for the slow and fast eye movements dynamics can be independently studied and better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article Subscribe and save

Springer+ Basic

€34.99 /Month

Subscribe now Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others Explore related subjectsDiscover the latest articles and news from researchers in related subjects, suggested using machine learning. REFERENCES
  1. Alvarez, T. L., J. L. Semmlow, and W. Yuan. Closely-separated, fast dynamic movements in disparity vergence. J. Neurophysiol. 79:37–44, 1998.

    PubMed  CAS  Google Scholar 

  2. Alvarez, T. L., J. L. Semmlow, W. Yuan, and P. Munoz. Dynamic details of disparity convergence eye movements. Ann. Biomed. Eng. 27:380–390, 1999.

    Article  PubMed  CAS  Google Scholar 

  3. Alvarez, T. L., J. L. Semmlow, W. Yuan, and P. Munoz. Disparity vergence double responses processed by internal error. Vis. Res. 40:341–347, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Alvarez, T. L., J. L. Semmlow, W. Yuan, and P. Munoz. Comparison of disparity vergence system responses to predictable and non-predictable stimulations. Curr. Physiol. Cogn. 21:243–261, 2002.

    Google Scholar 

  5. Chang, K. Singular perturbations of a general boundary value problem. SIAM J. Math. Anal. 3:520–526, 1972.

    Google Scholar 

  6. Gamlin, P., and L. Mays. Dynamic properties of medical rectus motoneurons during vergence eye movements. J. Neurophysiol. 67:64–74, 1992.

    PubMed  CAS  Google Scholar 

  7. Horng, J., J. L. Semmlow, G. Hung, and K. Ciuffreda. Initial component control in disparity vergence: A model-based study. IEEE Trans. Biomed. Eng. 45:249–257, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Hung, G. Dynamic model of the vergence eye movement system: Simulations using MATLAB/SIMULINK. Comput. Methods Programs Biomed. 55:59–68, 1998.

    Article  PubMed  CAS  Google Scholar 

  9. Hung, G., and K. J. Ciuffreda (eds.). Models of the Visual System, Chap. 9, New York: Kluwer Academic/Plenum, 2002.

  10. Hung, G. K., J. L. Semmlow, and K. J. Ciuffreda. A dual-model dynamic model of the vergence eye movement system. IEEE Trans. Biomed. Eng. 33:1021–1028, 1986.

    Article  PubMed  CAS  Google Scholar 

  11. Khosroyani, M., and G. K. Hung. A dual-mode dynamic model of the human accommodation system. Bull. Math. Biol. 64:285–299, 2002.

    Article  PubMed  Google Scholar 

  12. Kokotovic, P., H. Khalil, and J. O’Reilly. Singular Perturbation Methods in Control: Analysis and Design. Orlando, FL: Academic, 1986.

    Google Scholar 

  13. Munoz, P., J. L. Semmlow, W. Yuan, and T. L. Alvarez. Short-term modification of disparity convergence eye movements. Vis. Res. 39:1695–1705, 1999.

    Article  PubMed  CAS  Google Scholar 

  14. Robinson, D. A. The mechanics of human saccadic eye movement. J. Physiol. 17:245–264, 1964.

    Google Scholar 

  15. Semmlow, J. L., W. Yuan, and T. L. Alvarez. Evidence for separate control of slow version and vergence eye movements: Support of Hering's law. Vis. Res. 38:1145–1152, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Semmlow, J. L., W. Yaun, T. L. Alvarez. Short-term adaptive control processes in vergence eye movement. Curr. Physiol. Cogn. 21:343–375, 2002.

    Google Scholar 

  17. Szidarovszky, F., and A. Bahil. Linear Syst. Theory. Boca Raton, Florida: CRC, 1992.

    Google Scholar 

  18. Van Opstal, A. J., A. M. van Gisbergen, and J. J. Eggermont. Reconstruction of neural control signals for saccade based on an inverse method. Vis. Res. 25:789–801, 1985.

    Article  PubMed  CAS  Google Scholar 

  19. Yuan, W., J. L. Semmlow, T. L. Alvarez, and P. Munoz. Dynamics of the disparity vergence step response: A model based analysis. IEEE Trans. Biomed. Eng. 46:1191–1198, 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The author is thankful to Professor George Hung from Rutgers University, Department of Biomedical Engineering, for providing useful clarification of the considered vision system dynamic model and an interpretation of the roles of its slow and fast components.

Author information Authors and Affiliations
  1. Department of Mechanical Engineering, Acopian Engineering Center, Lafayette College, Easton, PA, USA

    Verica Radisavljevic-Gajic

  2. Department of Mechanical Engineering, Acopian Engineering Center, Lafayette College, 740 High Street, Room 241, Easton, PA, 18042-1771, USA

    Verica Radisavljevic-Gajic

Authors
  1. Verica Radisavljevic-Gajic
Corresponding author

Correspondence to Verica Radisavljevic-Gajic.

About this article Cite this article

Radisavljevic-Gajic, V. Slow-Fast Decoupling of the Disparity Convergence Eye Movements Dynamics. Ann Biomed Eng 34, 310–314 (2006). https://doi.org/10.1007/s10439-005-9042-0

Download citation

Keywords

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4