A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-9039-7 below:

On Prediction of Epileptic Seizures by Means of Genetic Programming Artificial Features

REFERENCES
  1. D'Alessandro, M. The Utility of Intracranial EEG Feature and Channel Synergy for Evaluating the Spatial and Temporal Behavior of Seizure Precursors, PhD Dissertation, Georgia Institute of Technology, Atlanta, 2001.

  2. D'Alessandro, M., R. Esteller, G. Vachtsevanos, A. Hinson, J. Echauz, and B. Litt. Epileptic seizures prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: A report of four patients. IEEE Trans. Biomed. Eng. 50(5):603–615, 2003.

    Article  PubMed  Google Scholar 

  3. Duda, R., P. Hart, and D. Stork. Pattern Classification, 2nd ed. New York: Wiley, 2001.

  4. Echauz, J. Wavelet Neural Networks for EEG Modeling and Classification, PhD Dissertation, Georgia Institute of Technology, August 1995.

  5. Elger, C. E., and K. Lehnertz. Seizure prediction by non-linear time series analysis of brain electrical activity. Eur. J. Neurosci. 10:786–789, 1998.

    Article  PubMed  CAS  Google Scholar 

  6. Firpi, H. Genetically Found, Neurally Computed Artificial Features with Applications to Epileptic Seizure Detection and Prediction, Master's Thesis, University of Puerto Rico-Mayagüez, 2001.

  7. Firpi, H. On Prediction and Detection of Epileptic Seizures by Means of Genetic Programming Artificial Features, PhD Dissertation, Michigan State University, 2005.

  8. Gilmore, R., and M. Lefranc. The Topology of Chaos: Alice in the Stretch and Squeezeland. New York: Wiley, 2002.

  9. Haupt, R. L., and S. E. Haupt. Practical Genetic Algorithms. New York: Wiley, 1998.

  10. Iasemidis, L. Epileptic seizure prediction and control. IEEE Trans. Biomed. Eng. 50(5):549–559, 2003.

    Article  PubMed  Google Scholar 

  11. Iasemidis, L., D.-S. Shiau, W. Chaovalitwongse, J. C. Sackellares, P. M. Pardalos, J. C. Principe, P. R. Carney, A. P. Prasad, B. Veeramani, and K. Tsakalis. Adaptive epileptic seizure prediction system. IEEE Trans. Biomed. Eng. 50(5):616–627, 2003.

    Article  PubMed  Google Scholar 

  12. Jansen, B. H. Quantitative analysis of electroencephalograms: Is there chaos in the future? Int. J. Biomed. Comput. 27:95–123, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Jia, W., N. Kong, F. Li, X. Gao, S. Gao, G. Zhang, Y. Wang, and F. Yang. An epileptic seizure prediction algorithm based on second-order complexity measure. Physiol. Meas. 26:609–625, 2005.

    Article  PubMed  Google Scholar 

  14. Koza, J. R. Genetic Programming: On Programming of Computers by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

  15. Lee, S. A., D. D. Spencer, and S. S. Spencer. Intracranial EEG seizure-onset patterns in neocortical epilepsy. Epilepsia 41(3):297–307, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Lehnertz, K., and C. E. Elger. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalogr Clin Neurophysiol 95:108–117.

  17. Lehnertz, K., and B. Litt. The First International Collaborative Workshop on Seizure Prediction: Summary and data description. Clin. Neurophysiol. 116(3):493–505, 2005.

    Article  PubMed  Google Scholar 

  18. Litt, B., R. Esteller, J. Echauz, M. D'Alessandro, R. Shor, T. Henry, P. Pennell, C. Epstein, R. Bakay, M. Dichter, and G. Vachtsevanos. Epileptic seizures may begin hours in advance of clinical seizures: A report of five patients. Neuron 29(4):51–64, 2001.

    Article  Google Scholar 

  19. Martinerie, J., C. Adam, M. le van Quyen, M. Baulac, S. Clemenceau, B. Renault, and F. J. Valera.. Epileptic seizures can be anticipated by non-linear analysis. Nat. Med. 4:1176–1176, 1998.

    Article  Google Scholar 

  20. Niederhoefer, C., F. Gollas, A. Chernihovskyi, K. Lehnertz, and R. Tetzlaff. Detection of seizure precursors in the EEG with cellular neural networks. Epilepsia 45(7):245, 2004 (abstract).

    Google Scholar 

  21. Orfanidis, S. J. Optimum Signal Processing: An Introduction, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1996.

  22. Petrosian, A., D. Prokhorov, R. Homan, R. Dashieff, and D. Wunch. Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing 30:201–218, 2000.

    Article  Google Scholar 

  23. Pritchard, W. S., and D. W. Duke. Measuring chaos in the brain: A tutorial review of nonlinear dynamical EEG analysis. Brain Cogn 27(3):353–397, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Sowa, R., F. Mormann, A. Chernihovskyi, C. Niederhoefer, R. Tetzlaff, C. Elger, and K. Lehnertz. Seizure prediction: Measuring EEG phase synchronization with cellular neural networks. Epilepsia 45(7):244, 2004 (abstract).

    Google Scholar 

  25. Sprott, J. C. Chaos and Time-Series Analysis. New York: Oxford University Press, 2003.

  26. Takens, F. Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980 Lecture Notes in Mathematics 898. Berlin: Springer-Verlag, 1981, pp. 336–381.

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4