Alfieri, O., and F. Maisano. An effective technique to correct anterior mitral leaflet prolapse. J. Card. Surg. 14(6):468–470, 1999.
Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–Part I: Experimental results. J. Biomech. Eng. 122(1):23–30, 2000.
Borer, J. S., and K. Kupfer. Mitral regurgitation: Current treatment options and their selection. Curr. Treat. Options Cardiovasc. Med. 6(6):509–517, 2004.
Carew, E. O., A. Garg, J. E. Barber, and I. Vesely. Stress relaxation preconditioning of porcine aortic valves. Ann. Biomed. Eng. 32(4):563–572, 2004.
Cole, W. G., D. Chan, A. J. Hickey, and D. E. Wilcken. Collagen composition of normal and myxomatous human mitral heart valves. Biochem. J. 219(2):451–460, 1984.
Curtis, M. B., and D. V. Priola. Mechanical properties of the canine mitral valve: Effects of autonomic stimulation. Am. J. Physiol. 262(1 Pt 2): H56–H62, 1992.
David, T. E., M. Komeda, C. Pollick, and R. J. Burns. Mitral valve annuloplasty: The effect of the type on left ventricular function. Ann. Thorac Surg. 47(4):524–527, 1989; discussion 527–528.
Doehring, T. C., E. O. Carew, and I. Vesely. The effect of strain rate on the viscoelastic response of aortic valve tissue: A direct-fit approach. Ann. Biomed. Eng. 32(2):223–2302, 2004.
El Khoury, G., P. Noirhomme, R. Verhelst, J. Rubay, and R. Dion. Surgical repair of the prolapsing anterior leaflet in degenerative mitral valve disease. J. Heart Valve Dis. 9(1):75–80, 2000; discussion 81.
Gilbert, T. W., M. S. Sacks, J. S. Grashow, S. L. Y. Woo, M. B. Chancellor, and S. F. Badylak. Fiber kinematics of small intestinal submucosa under uniaxial and biaxial stretch. J. Biomech. Eng., in press.
Hashim, S. R., A. Fontaine, S. He, R. A. Levine, and A. P. Yoganathan. A three-component force vector cell for in vitro quantification of the force exerted by the papillary muscle on the left ventricular wall. J. Biomech. 30(10):1071–1075, 1997.
Haut, R. C. Age-dependent influence of strain rate on the tensile failure of rat-tail tendon. J. Biomech. Eng. 105(3):296–299, 1983.
He, S., A. A. Fontaine, E. Schwammenthal, A. P. Yoganathan, and R. A. Levine. Integrated mechanism for functional mitral regurgitation: Leaflet restriction versus coapting force: In vitro studies. Circulation 96(6):1826–1834, 1997.
He, Z., M. S. Sacks, L. Baijens, S. Wanant, P. Shah, and A. P. Yoganathan. Effects of papillary muscle position on in vitro dynamic strain on the porcine mitral valve. J. Heart Valve Dis. 12(4):488–494, 2003.
Kreindel, M. S., W. A. Schiavone, H. M. Lever, and D. Cosgrove. Systolic anterior motion of the mitral valve after carpentier ring valvuloplasty for mitral valve prolapse. Am. J. Cardiol. 57(6):408–412, 1986.
Kunzelman, K. S., M. S. Sacks, R. P. Cochran, and R. C. Eberhart. Mitral valve leaflet collagen distribution by laser analysis. In: Proceedings of the Seventh Southern Biomedical Engineering Conference, TX: Dallas, 1988, pp. 82–85.
Lam, J. H., N. Ranganathan, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. I. Chordae tendineae: A new classification. Circulation 41(3):449–458, 1970.
Lanir, Y. A structural theory for the homogeneous biaxial stress–strain relationships in flat collageneous tissues. J. Biomech. 12:423–436, 1979.
Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16:1–12, 1983.
Lee, J. M., D. W. Courtman, and D. R. Boughner. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material. J. Biomed. Mater. Res. 18:61–77, 1984.
Leeson-Dietrich, J., D. Boughner, and I. Vesely. Porcine pulmonary and aortic valves: A comparison of their tensile viscoelastic properties at physiological strain rates. J. Heart Valve Dis. 4:88–94, 1995.
Liao, J., L. Yang, J. Grashow, and M. S. Sacks. Molecular orientation of collagen in intact planar connective tissues under biaxial stretch. Acta Biomater. 1(1), 2004.
Lim, K. O., and D. R. Boughner. Low frequency dynamic viscoelastic properties of human mitral valve tissue. Cardiovasc. Res. 10(4):45–54, 1976.
Lis, Y., M. C. Burleigh, D. J. Parker, A. H. Child, J. Hogg, and M. J. Davies. Biochemical characterization of individual normal, floppy and rheumatic human mitral valves. Biochem. J. 244(3):597–603, 1987.
Lydon, C., J. Crisco, M. Panjabi, and M. Galloway. Effect of elongation rate on the failure properties of the rabbit anterior cruciate ligament. Clin. Biomech. (Bristol, Avon) 10(8):428–433, 1995.
May-Newman, K., and F. C. Yin. Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am. J. Physiol. 269(4 Pt 2):H1319–H1327, 1995.
May-Newman, K., and F. C. Yin. A constitutive law for mitral valve tissue. J. Biomech. Eng. 120(1):38–47, 1998.
Merryman, W. D., H. Y. S. Huang, F. J. Schoen, and M. S. Sacks. The effects of cellular contraction on aortic valve leaflet flexural stiffness. J. Biomech., 39(1):88–96, 2006.
Naimark, W. A. Structure/function relations in mammalian pericardial tissue: Implications for comparative and developmental physiology, University of Toronto, 1995.
Naimark, W. A., J. M. Lee, H. Limeback, and D. Cheung. Correlation of structure and viscoelastic properties in the pericardia of four mammalian species. Am. J. Physiol. 263(32):H1095–H1106, 1992.
Naimark, W. A., S. D. Waldman, R. J. Anderson, B. Suzuki, C. A. Pereira, and J. M. Lee. Thermomechanical analysis of collagen crosslinking in the developing lamb pericardium. Biorheology 35(1):1–16, 1998.
Ormiston, J. A., P. M. Shah, C. Tei, and M. Wong. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 64(1):113–120, 1981.
Otto, C. M. Valvular Heart Disease. Philadelphia: Saunders, 2004.
Perier, P., B. Clausnizer, and K. Mistarz. Carpentier “sliding leaflet” technique for repair of the mitral valve: Early results. Ann. Thoracic Surg. 57:383–386, 1994.
Perloff, J. K., and W. C. Roberts. The mitral apparatus: Functional anatomy of mitral regurgitation. Circulation 46:227–239, 1972.
Ranganathan, N., J. H. Lam, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. II. The value leaflets. Circulation 41(3):459–467, 1970.
Sacks, M. S. Biaxial mechanical evaluation of planar biological materials. J. Elasticity 61:199–246, 2000.
Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, and A. P. Yoganathan. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.
Silverman, M. E., and J. W. Hurst. The mitral complex. Interaction of the anatomy, physiology, and pathology of the mitral annulus, mitral valve leaflets, chordae tendineae, and papillary muscles. Am. Heart J. 76(3):399–418, 1968.
Smedira, N. G., R. Selman, D. M. Cosgrove, P. M. McCarthy, B. W. Lytle, P. C. Taylor, C. Apperson-Hansen, R. W. Stewart, and F. D. Loop. Repair of anterior leaflet prolapse: Chordal transfer is superior to chordal shortening. J. Thorac Cardiovasc. Surg. 112(2):287–291, 1996; discussion 291–292.
Woo, S. L., M. A. Gomez, and W. H. Akeson. The time and history-dependent viscoelastic properties of the canine medical collateral ligament. J. Biomech. Eng. 103(4):293–298, 1981.
Woo, S. L. Y., C. A. Orlando, J. F. Camp, and W. H. Akeson. Effects of postmortem storage by freezing on ligament tensile behavior. J. Biomech. 19:399–404, 1994.
Yacoub, M. H., and L. H. Cohn. Novel approaches to cardiac valve repair: From structure to function: Part II. Circulation 109(9):1064–1072, 2004.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4