A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-8964-9 below:

The Effects of Trabecular-Bone Loading Variables on the Surface Signaling Potential for Bone Remodeling and Adaptation

References
  1. Bertram, J. E., and S. M. Swartz. The ‘law of bone transformation’: A case of crying Wolff? Biol. Rev. Camb. Philos. Soc. 66:245–273, 1991.

    Article  Google Scholar 

  2. Brand, R. A., C. M. Stanford, and D. P. Nicolella. Primary adult human bone cells do not respond to tissue (continuum) level strains. J. Orthop. Sci. 6:3295–301, 2001.

    Article  Google Scholar 

  3. Bronckers, A. L. J. J., W. Goei, G. Luo, G. Karsenty, R. N. D’Souza, D. M. Lyaruu, and E. H. Burger. DNA fragmentation during bone formation in neonatal rodents assessed by transferase-mediated end labeling. J. Bone Miner. Res. 11:1281–1291, 1996.

    Google Scholar 

  4. Burger, E. H., and J. Klein-Nulend. Mechanosensory transduction in bone—role of the lacuno-canalicular network. FASEB J. 13:S101–S112, 1999.

    Google Scholar 

  5. Chambers, T. J. The direct and indirect effects of estrogen on bone formation. Adv. Organ. Biol. 5B:627–638, 1998.

    Article  Google Scholar 

  6. Chow, J. W., A. J. Wilson, T. J. Chambers, and S. W. Fox. Mechanical loading stimulates bone formation by reactivation of bone lining cells in 13-week-old rats. J. Bone Miner. Res. 13:1760–1767, 1998.

    Google Scholar 

  7. Courteix, D., E. Lespessailles, S. Loiseau Peres, P. Obert, P. Germain, and C. L. Benhamou. Effects of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporos. Int. 8:152–158, 1998.

    Google Scholar 

  8. Cowin, S. C., L. Moss-Salentijn, and M. L. Moss. Candidates for the mechanosensory system in bone. J. Biomech. Eng. 113:191–197, 1991.

    Google Scholar 

  9. Currey, J. D. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21:131–139, 1988.

    Article  Google Scholar 

  10. Dobnig, H., and R. T. Turner. Evidence that intermittent treatment with parathyroid hormone increases bone formation in aged rats by activation of bone lining cells to osteoblasts. Endocrinology136:3632–3638, 1995.

    Article  Google Scholar 

  11. Eriksen, E. F., and M. Kassem. The Cellular basis of bone remodeling. In: Triangle 31 Sandoz J. of Med. Sc., The changing architecture of the skeleton. pp 45–57, 1992.

  12. Frost, H. M. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s Law: The bone modelling problem. Anat. Rec. 226:403–413, 1990.

    Google Scholar 

  13. Frost, H. M. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s Law: The remodeling problem. Anat. Rec. 226:414–422, 1990.

    Google Scholar 

  14. Guldberg, R. E., M. Richards, N. J. Caldwell, C. L. Kuelske, and S. A. Goldstein. Mechanical stimulation of tissue repair in the hydraulic bone chamber. J. Bone Miner. Res. 12:1295–1302, 1997.

    Google Scholar 

  15. Han, Z. H., S. Palnitkar, D. S. Rao, D. Nelson, and A. M. Parfitt. Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: Implications for mechanisms of bone loss. J. Bone Miner. Res. 12:498–508, 1997.

    Google Scholar 

  16. Huiskes, R., R. Ruimerman, G. H. van Lenthe, and J. D. Janssen. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Jee, W. S. S., and X. J. Li. Adaptation of cancellous bone to overloading in the adult rat: A single photon absorptiometry and histomorphometry study. Anat. Rec. 227:418–426, 1990.

    Google Scholar 

  18. Jee, W. S. S. Integrated bone tissue physiology: Anatomy and physiology. In: Bone Mechanics Handbook, S. C. Cowin. London: CRC Press, 2001, pp. 1.1–1.68.

    Google Scholar 

  19. Kanis, J. A. Osteoporosis, Blackwell Healthcare Communications, 1997.

  20. Klein-Nulend, J., A. van derPlas, C. M. Semeins, N. E. Ajubi, J. A. Frangos, P. J. Nijweide, and E. H. Burger. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 9:441–445, 1995.

    Google Scholar 

  21. Knothe Tate, M. L., and M. B. Schaffler. Loss of Osteocyte Integrity Colocolizes with Bone Resorption Following Disuse. Trans. 48th Ann. meeting of the Orthop Res Society, Dallas, Texas, 2002.

    Google Scholar 

  22. Kufahl, R. H., and S. Saha. A theoretical model for stress-generated fluid flow in the canaliculi-lacunae network in bone tissue. J. Biomech. 23:171–180, 1990.

    Article  Google Scholar 

  23. Li, C. Y., D. Laudier, and M. B. Schaffler. Remobilization restores cancellous bone mass but not microarchitecture after long term disuse in older adult dogs. Trans. 49th Ann. meeting of the Orthop Res Society}, New Orleans, LA, 2003.

  24. Martin, R. B. Towards a unifying theory of bone remodeling. Bone 26:1–6, 2000.

    Article  Google Scholar 

  25. McNamara, L. M., J. C. van der Linden, H. Weinans, P. J. Prendergast. High stresses occur in bone trabeculae under low loads A study using micro-serial sectioning techniques and finite element analysis. Proceedings of the 13th Conference of the ESB, Wroclow, Poland, 2002.

  26. Mosekilde, L. Consequences of the remodeling process for vertebral trabecular bone structure: A scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner. 10:13–35, 1990.

    Article  Google Scholar 

  27. Mullender, M. G., and R. Huiskes. A proposal for the regulatory mechanism of Wolff’s law. J. Orthop. Res. 13:503–512, 1995.

    Google Scholar 

  28. Mullender, M. G., R. Huiskes, H. Versleyen, and P. Buma. Osteocyte density and histomorphometric parameters in cancellous bone of the proximal femur in five mammalian species. J. Orthop. Res. 14:972–979, 1996.

    Google Scholar 

  29. Nicolella, D., and J. Lankford. Strain Concentration Effects of Osteocyte Lacunae. Trans. 48th Ann. meeting of the Orthop Res Society, Dallas, Texas, 2002.

  30. Noble, B. S., H. Stevens, N. Loveridge, and J. Reeve. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone 20:273–182, 1997.

    Article  CAS  PubMed  Google Scholar 

  31. Parfitt, A. M., C. H. E. Mathews, A. R. Villanueva, and M. Kleerekoper. Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J. Clin. Invest. 72:1396–1409, 1983.

    Article  Google Scholar 

  32. Parfitt, A. M., M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche, P. J. Meunier, S. M. Ott, and R. R. Recker. Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR histomorphometry nomenclature committee. J. Bone Miner. Res. 2:595–610, 1987.

    Google Scholar 

  33. Rodan, G. A. Mechanical loading, estrogen deficiency, and coupling of bone formation to bone resorption. J. Bone Miner. Res. 6:527–530, 1991.

    Article  Google Scholar 

  34. Ruimerman, R., R. Huiskes, G. H. van Lenthe, and J. D. Janssen. A computer-simulation model relating bone-cell metabolism, to mechanical adaptation of trabecular bone. Comput. Methods Biomech. Biomed. Engin. 4:433–448, 2001.

    Google Scholar 

  35. Ruimerman, R., P. Hilbers, B. van Rietbergen, and R. Huiskes. Indirect osteoblast-osteoclast coupling through mechanics explains elevated osteoblastic bone formation as a response to increased osteoclastic activity. Trans. 49th Ann. meeting of the Orthop Res Society, New Orleans, LA, 2003.

  36. Ruimerman, R., P. Hilbers, B. van Rietbergen, and R. Huiskes. A theoretical framework for strain-related trabecular bone maintenance and adaptation. J. Biomech. In press.

  37. Skerry, T. M., L. Bitensky, J. Chayen, and L. E. Lanyon. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo. J. Bone Miner. Res. 4:783–788, 1989.

    Google Scholar 

  38. Tanck, E., J. Homminga, G. H. van Lenthe, and R. Huiskes. Increase in bone volume fraction precedes architectural adaptation in growing bone. Bone 28:650–654, 2001.

    Article  Google Scholar 

  39. Verborgt, O., G. J. Gibson, and M. B. Schaffler. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue In vivo. J. Bone Miner. Res. 15:60–67, 2000.

    Google Scholar 

  40. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.

    Article  Google Scholar 

  41. Wolff, J. Das Gesetz der Transformation der Knochen. Berlin A. Hirchwild (1892) Translated as: The Law of Bone Remodeling edited by Maquet P., and R. Furlong, Berlin: Springer-Verlag, 1986.

  42. You, L., S. C. Cowin, M. B. Schaffler, and S. Weinbaum. A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. J. Biomech. 34:1375–1386, 2001.

    Article  Google Scholar 

  43. Zerwekh, J. E., L. A. Ruml, F. Gottschalk, and C. Y. C. Pak. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J. Bone Miner. Res. 13:1594–1601, 1998.

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4