A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-8963-x below:

Flow Perfusion Enhances the Calcified Matrix Deposition of Marrow Stromal Cells in Biodegradable Nonwoven Fiber Mesh Scaffolds

References
  1. Aho, A. J., T. Ekfors, P. B. Dean, H. T. Aro, A. Ahonen, and V. Nikkanen. Incorporation and clinical results of large allografts of the extremities and pelvis. Clin. Orthop. 307:200–13, 1994.

    Google Scholar 

  2. Ajubi, N. E., J. Klein-Nulend, P. J. Nijweide, T. Vrijheid-Lammers, M. J. Alblas, and E. H. Burger. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton-dependent process. Biochem. Biophys. Res. Commun. 225:62–68, 1996.

    Article  Google Scholar 

  3. Aubin, J. E. Osteoprogenitor cell frequency in rat bone marrow stromal populations: Role for heterotypic cell-cell interactions in osteoblast differentiation. J. Cell Biochem. 72:396–410, 1999.

    Google Scholar 

  4. Bancroft, G. N., V. I. Sikavitsas, and A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9:549–554, 2003.

    Article  Google Scholar 

  5. Bancroft, G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. USA 99:12600–12605, 2002.

    Article  Google Scholar 

  6. Banwart, J. C., M. A. Asher, and R. S. Hassanein. Iliac crest bone graft harvest donor site morbidity: A statistical evaluation. Spine 20:1055, 1995.

    CAS  PubMed  Google Scholar 

  7. Behravesh, E., A. W. Yasko, P. S. Engel, and A. G. Mikos. Synthetic biodegradable polymers for orthopaedic applications. Clin. Orthop. 367:S118–S129, 1999.

    Article  Google Scholar 

  8. Bucholz, R. W. Non-allograft osteoconductive bone graft substitutes. Clin. Orthop. 398:44–52, 2002.

    Google Scholar 

  9. Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone—role of the lacunocanalicular network. FASEB J. 13:S101–S112, 1999.

    Google Scholar 

  10. Caplan, A. I. Tissue engineering designs for the future: New logics, old molecules. Tissue Eng. 6:1–8, 2000.

    Article  Google Scholar 

  11. Caplan, A. I., and S. P. Bruder. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7:259–64, 2001.

    Article  Google Scholar 

  12. Goldstein, A. S., T. M. Juarez, C. D. Helmke, M. C. Gustin, and A. G. Mikos. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288, 2001.

    Article  Google Scholar 

  13. Gomes, M. E., V. I. Sikavitsas, E. Behravesh, R. L. Reis, and A. G. Mikos. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. 67A:87–95, 2003.

    Article  Google Scholar 

  14. Gronthos, S., and P. J. Simmons. The biology and application of human bone marrow stromal cell precursors. J. Hematother. 5:15–23, 1996.

    Google Scholar 

  15. Hillsley, M. V., and J. A. Frangos. Bone tissue engineering: The role of interstitial fluid flow. Biotechnol. Bioeng. 43:573–581, 1994.

    Article  Google Scholar 

  16. Ishaug, S. L., G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36:17–28, 1997.

    Google Scholar 

  17. Ishaug-Riley, S. L., G. M. Crane, A. Gurlek, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(D,L-lactic-co-glycolic acid) foams implanted into the rat mesentery. J. Biomed. Mater. Res. 36:1–8, 1997.

    Article  Google Scholar 

  18. Johnson, D. L., T. N. McAllister, and J. A. Frangos. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. 271:E205–E208, 1996.

    Google Scholar 

  19. Lappa, M. Organic tissues in rotating bioreactors: Fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnol. Bioeng. 84:518–32, 2003.

    Article  Google Scholar 

  20. Lian, J. B., and G. S. Stein. Concepts of osteoblast growth and differentiation: Basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral Biol. Med. 3:269–305, 1992.

    Google Scholar 

  21. Maniatopoulos, C., J. Sodek, and A. H. Melcher. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 254:317–330,1988.

    CAS  PubMed  Google Scholar 

  22. Masuda, T., P. K. Yliheikkila, D. A. Felton, and L. F. Cooper. Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. Int. J. Oral Maxillofac. Implants 13:17–29, 1993.

    Google Scholar 

  23. Mooney, D. J., and A. G. Mikos. Growing new organs. Sci. Am. 280:460–65, 1999.

    Article  Google Scholar 

  24. Mueller, S. M., S. Mizuno, L. C. Gerstenfeld, and J. Glowacki. Medium perfusion enhances osteogenesis by murine osteosarcoma cells in three-dimensional collagen sponges. J. Bone Miner. Res. 14:2118–2126, 1999.

    Google Scholar 

  25. Muschler, G. F., B. Huber, T. Ullman, R. Barth, K. Easley, J. O. Otis, and J. M. Lane. Evaluation of bone-grafting materials in a new canine, segmental spine fusion model. J. Orthop. Res. 11:514–524, 1993.

    Google Scholar 

  26. Pavalko, F. M., N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y. F. Hsieh, J. Qiu, and R. L. Duncan. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275:C1591–C1601, 1998.

    Google Scholar 

  27. Petite, H. V., W. Viateau, A. Bensaid, C. Meunier, M. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin. Tissue-engineered bone regeneration. Nature Biotech. 18:959–963, 2000.

    Article  Google Scholar 

  28. Reddi, A. H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotech. 16:247–252, 1998.

    Article  Google Scholar 

  29. Richards, M., B. A. Huibregtse, A. I. Caplan, J. A. Goulet, and S. A. Goldstein.Marrow-derived progenitor cell injections enhance new bone formation during distraction. J. Orthop. Res. 17:900–908, 1999.

    Google Scholar 

  30. Schwarz, R. P., T. J. Goodwin, and D. A. Wolf. Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. J. Tissue Cult. Methods 14:51–58, 1992.

    Google Scholar 

  31. Sikavitsas, V. I., G. N. Bancroft, and A. G. Mikos. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mater. Res. 62:136–148, 2002.

    Article  Google Scholar 

  32. Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. USA 100:14683–14688, 2003.

    Article  Google Scholar 

  33. Sikavitsas, V. I., J. S. Temenoff, and A. G. Mikos. Biomaterials and bone mechanotransduction. Biomaterials 22:2581–2593, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Sittinger, M., D. Reitzel, M. Dauner, H. Hierlemann, C. Hammer, E. Kastenbauer, H. Planck, G. R. Burmester, and J. Bujia. Resorbable polyesters in cartilage engineering: Affinity and biocompatibility of polymer fiber structures to chondrocytes. J. Biomed. Mater. Res. 33:57–63, 1996.

    Article  Google Scholar 

  35. Sucosky, P., D. F. Osorio, J. B. Brown, and G. P. Neitzel. Fluid mechanics of a spinner-flask bioreactor. Biotechnol. Bioeng. 85:34–46, 2004.

    Article  Google Scholar 

  36. Tami, A. E., P. Nasser, O. Verborgt, M. B. Schaffler, and M. L. Knothe Tate. The role of interstitial fluid flow in the remodeling response to fatigue loading. J. Bone Miner. Res. 17:2030–2037, 2002.

    Google Scholar 

  37. Vaadrager, J. M., P. J. van Mullem, and J. R. de Wijn. Craniofacial contouring and porous acrylic cement. Ann. Plast. Surg. 21:583–593, 1988.

    Google Scholar 

  38. Van den Dolder, J., G. N. Bancroft, V. I. Sikavitsas, P. M. H. Spauwen, J. A. Jansen, and A. G. Mikos. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J. Biomed. Mater. Res. 64:235–241, 2003.

    Article  Google Scholar 

  39. Vunjak-Novakovic, G., I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, and L. E. Freed. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue engineered cartilage. J. Orthop. Res. 17:130–138,1998.

    Google Scholar 

  40. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.

    Article  Google Scholar 

  41. You, J., G. C. Reilly, X. Zhen, C. E. Yellowley, Q. Chen, H. J. Donahue, and C. R. Jacobs. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 276:13365–13371, 2001.

    Article  Google Scholar 

  42. Younger, E. M., and M. W. Chapman. Morbidity at bone graft donor sites. J. Orthop. Trauma 3:192–195, 1989.

    Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4