Aho, A. J., T. Ekfors, P. B. Dean, H. T. Aro, A. Ahonen, and V. Nikkanen. Incorporation and clinical results of large allografts of the extremities and pelvis. Clin. Orthop. 307:200–13, 1994.
Ajubi, N. E., J. Klein-Nulend, P. J. Nijweide, T. Vrijheid-Lammers, M. J. Alblas, and E. H. Burger. Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes—a cytoskeleton-dependent process. Biochem. Biophys. Res. Commun. 225:62–68, 1996.
Aubin, J. E. Osteoprogenitor cell frequency in rat bone marrow stromal populations: Role for heterotypic cell-cell interactions in osteoblast differentiation. J. Cell Biochem. 72:396–410, 1999.
Bancroft, G. N., V. I. Sikavitsas, and A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9:549–554, 2003.
Bancroft, G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. USA 99:12600–12605, 2002.
Banwart, J. C., M. A. Asher, and R. S. Hassanein. Iliac crest bone graft harvest donor site morbidity: A statistical evaluation. Spine 20:1055, 1995.
Behravesh, E., A. W. Yasko, P. S. Engel, and A. G. Mikos. Synthetic biodegradable polymers for orthopaedic applications. Clin. Orthop. 367:S118–S129, 1999.
Bucholz, R. W. Non-allograft osteoconductive bone graft substitutes. Clin. Orthop. 398:44–52, 2002.
Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone—role of the lacunocanalicular network. FASEB J. 13:S101–S112, 1999.
Caplan, A. I. Tissue engineering designs for the future: New logics, old molecules. Tissue Eng. 6:1–8, 2000.
Caplan, A. I., and S. P. Bruder. Mesenchymal stem cells: Building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7:259–64, 2001.
Goldstein, A. S., T. M. Juarez, C. D. Helmke, M. C. Gustin, and A. G. Mikos. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288, 2001.
Gomes, M. E., V. I. Sikavitsas, E. Behravesh, R. L. Reis, and A. G. Mikos. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. 67A:87–95, 2003.
Gronthos, S., and P. J. Simmons. The biology and application of human bone marrow stromal cell precursors. J. Hematother. 5:15–23, 1996.
Hillsley, M. V., and J. A. Frangos. Bone tissue engineering: The role of interstitial fluid flow. Biotechnol. Bioeng. 43:573–581, 1994.
Ishaug, S. L., G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J. Biomed. Mater. Res. 36:17–28, 1997.
Ishaug-Riley, S. L., G. M. Crane, A. Gurlek, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(D,L-lactic-co-glycolic acid) foams implanted into the rat mesentery. J. Biomed. Mater. Res. 36:1–8, 1997.
Johnson, D. L., T. N. McAllister, and J. A. Frangos. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts. Am. J. Physiol. 271:E205–E208, 1996.
Lappa, M. Organic tissues in rotating bioreactors: Fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnol. Bioeng. 84:518–32, 2003.
Lian, J. B., and G. S. Stein. Concepts of osteoblast growth and differentiation: Basis for modulation of bone cell development and tissue formation. Crit. Rev. Oral Biol. Med. 3:269–305, 1992.
Maniatopoulos, C., J. Sodek, and A. H. Melcher. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 254:317–330,1988.
Masuda, T., P. K. Yliheikkila, D. A. Felton, and L. F. Cooper. Generalizations regarding the process and phenomenon of osseointegration. Part I. In vivo studies. Int. J. Oral Maxillofac. Implants 13:17–29, 1993.
Mooney, D. J., and A. G. Mikos. Growing new organs. Sci. Am. 280:460–65, 1999.
Mueller, S. M., S. Mizuno, L. C. Gerstenfeld, and J. Glowacki. Medium perfusion enhances osteogenesis by murine osteosarcoma cells in three-dimensional collagen sponges. J. Bone Miner. Res. 14:2118–2126, 1999.
Muschler, G. F., B. Huber, T. Ullman, R. Barth, K. Easley, J. O. Otis, and J. M. Lane. Evaluation of bone-grafting materials in a new canine, segmental spine fusion model. J. Orthop. Res. 11:514–524, 1993.
Pavalko, F. M., N. X. Chen, C. H. Turner, D. B. Burr, S. Atkinson, Y. F. Hsieh, J. Qiu, and R. L. Duncan. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. 275:C1591–C1601, 1998.
Petite, H. V., W. Viateau, A. Bensaid, C. Meunier, M. de Pollak, M. Bourguignon, K. Oudina, L. Sedel, and G. Guillemin. Tissue-engineered bone regeneration. Nature Biotech. 18:959–963, 2000.
Reddi, A. H. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotech. 16:247–252, 1998.
Richards, M., B. A. Huibregtse, A. I. Caplan, J. A. Goulet, and S. A. Goldstein.Marrow-derived progenitor cell injections enhance new bone formation during distraction. J. Orthop. Res. 17:900–908, 1999.
Schwarz, R. P., T. J. Goodwin, and D. A. Wolf. Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity. J. Tissue Cult. Methods 14:51–58, 1992.
Sikavitsas, V. I., G. N. Bancroft, and A. G. Mikos. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mater. Res. 62:136–148, 2002.
Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. USA 100:14683–14688, 2003.
Sikavitsas, V. I., J. S. Temenoff, and A. G. Mikos. Biomaterials and bone mechanotransduction. Biomaterials 22:2581–2593, 2001.
Sittinger, M., D. Reitzel, M. Dauner, H. Hierlemann, C. Hammer, E. Kastenbauer, H. Planck, G. R. Burmester, and J. Bujia. Resorbable polyesters in cartilage engineering: Affinity and biocompatibility of polymer fiber structures to chondrocytes. J. Biomed. Mater. Res. 33:57–63, 1996.
Sucosky, P., D. F. Osorio, J. B. Brown, and G. P. Neitzel. Fluid mechanics of a spinner-flask bioreactor. Biotechnol. Bioeng. 85:34–46, 2004.
Tami, A. E., P. Nasser, O. Verborgt, M. B. Schaffler, and M. L. Knothe Tate. The role of interstitial fluid flow in the remodeling response to fatigue loading. J. Bone Miner. Res. 17:2030–2037, 2002.
Vaadrager, J. M., P. J. van Mullem, and J. R. de Wijn. Craniofacial contouring and porous acrylic cement. Ann. Plast. Surg. 21:583–593, 1988.
Van den Dolder, J., G. N. Bancroft, V. I. Sikavitsas, P. M. H. Spauwen, J. A. Jansen, and A. G. Mikos. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J. Biomed. Mater. Res. 64:235–241, 2003.
Vunjak-Novakovic, G., I. Martin, B. Obradovic, S. Treppo, A. J. Grodzinsky, R. Langer, and L. E. Freed. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue engineered cartilage. J. Orthop. Res. 17:130–138,1998.
Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.
You, J., G. C. Reilly, X. Zhen, C. E. Yellowley, Q. Chen, H. J. Donahue, and C. R. Jacobs. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 276:13365–13371, 2001.
Younger, E. M., and M. W. Chapman. Morbidity at bone graft donor sites. J. Orthop. Trauma 3:192–195, 1989.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4