A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-6045-8 below:

A Method for the Automated Detection of Venous Gas Bubbles in Humans Using Empirical Mode Decomposition

References
  1. Belcher, E. O. Quantification of bubbles formed in animals and man during decompression. IEEE Trans. Biomed. Eng. 27:330–338, 1980.

    PubMed  Google Scholar 

  2. Chan, B. C. B., F. H. Y. Chan, F. K. Lam, P. Lui, and P. W. F. Poon. Fast detection of venous air embolism in Doppler heart sounds using the wavelet transform. IEEE Trans. Biomed. Eng. 44:237–246, 1997.

    Article  PubMed  Google Scholar 

  3. Chappell, M. A., and S. J. Payne. The automated extraction of the characteristics of blood cell and bubble movement from Doppler ultrasound recordings. Undersea Hyperb. Med. 31:341, 2004.

    Google Scholar 

  4. Cullinane, M., R. Dittrich, Z. Kaposzta, H. S. Markus, G. Reid, R. Dittrich, D. W. Droste, R. Ackerstaff, V. Babikian, D. Grossett, M. Siebler, L. Valton, and H. S. Markus. Evaluation of new online automated embolic signal detection algorithm, including comparison with panel of international experts. Stroke 31:1335–1341, 2000.

    PubMed  Google Scholar 

  5. Evans, D. H., and W. N. McDicken. Doppler Ultrasound Physics, Instrumentation and Signal Processing. Wiley, Chichester, UK, 2000.

    Google Scholar 

  6. Fan, L., D. H. Evans, and A. R. Naylor. Automated embolus identification using a rule-based expert system. Ultrasound Med. Biol. 27:1065–1077, 2001.

    Article  PubMed  Google Scholar 

  7. Flandrin, P., G. Rilling, and P. Gonçalvés. Empirical mode decomposition as a filter bank. IEEE Signal Process Lett. 11:112–114, 2004.

    Article  Google Scholar 

  8. Gibby, G. L. Real-time automated computerized detection of venous air emboli in dogs. J. Clin. Monit. 9:354–363, 1993.

    Article  PubMed  Google Scholar 

  9. Gibby, G. L., and M. D. Ghani. Computer-assisted Doppler monitoring to enhance detection of air emboli. J. Clin. Monit. 4:64–73, 1988.

    Article  PubMed  Google Scholar 

  10. Hamilton, P., and W. Tompkins. Quantitative investigation of QRS detection rules using the MIT/BIH arrythmia database. IEEE Trans. Biomed. Eng. 33:1157–1165, 1986.

    PubMed  Google Scholar 

  11. Huang, N. E., C. W. Man-Li, S. R. Long, S. P. Shen, Q. Wendong, P. Gloersen, and K. L. Fan. A confidence limit for the empirical mode decomposition and hilbert spectral analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 459:2317–2345, 2003.

    Article  Google Scholar 

  12. Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the hilbert spectrum for nonlinear time series analysis. Proc. R. Soc. Lond. A 454:903–995, 1998.

    Google Scholar 

  13. Krongold, B. S., A. M. Sayeed, M. A. Moehring, J. A. Ritcey, M. P. Spencer, and D. L. Jones. Time-scale detection of microemboli in flowing blood with Doppler ultrasound. IEEE Trans. Biomed. Eng. 46:1081–1089, 1999.

    Article  PubMed  Google Scholar 

  14. Markus, H., M. Cullinane, and G. Reid. Improved automated detection of embolic signals using a novel frequency filtering approach. Stroke 30:1610–1615, 1999.

    PubMed  Google Scholar 

  15. Markus, H., A. Loh, and M. M. Brown. Computerized detection of cerebral emboli and discrimination from artifact using Doppler ultrasound. Stroke 24:1667, 1993.

    PubMed  Google Scholar 

  16. Marroni, A., P. B. Bennett, F. J. Cronje, R. Cali-Corleo, P. Germonpre, M. Pieri, C. Bonuccelli, and C. Balestra. A deep stop during decompression from 82 fsw (25 m) significantly reduces bubbles and fast tissue gas tensions. Undersea Hyperb. Med. 31:233–243, 2004.

    PubMed  Google Scholar 

  17. Marroni, A., and R. Cali Corleo. Project SAFE DIVE—a preliminary report. In: XXI Annual Meeting of the European Underwater and Barometric Society, 1995.

  18. Marroni, A., R. Cali Corleo, C. Balestra, E. Voellm, and M. Pieri. Incidence of asymptomatic circulating venous gas emboli in unrestricted, uneventful recreational diving. DAN Europe's project SAFE DIVE first results. In: XXVI Annual Scientific Meeting of the European Underwater and Barometric Society, Malta, 1996.

  19. Marroni, A., R. Cali Corleo, and P. Denoble. Understanding the safety of recreational diving. DAN Europe's project SAFE DIVE phase I: Fine tuning of the field research engine and methods. In: International Joint Meeting on Hyperbaric and Underwater Medicine, Milano, 1996.

  20. Munts, A. G., R. G. A. Ackerstaff, W. H. Mess, L. Walda, and E. F. Bruggemans. Feasibility and reliability of on-line automated microemboli detection after carotid endarterectomy. A transcranial Doppler study. Eur. J. Vasc. Endovasc. Surg. 25:262–266, 2003.

    Article  PubMed  Google Scholar 

  21. Nishi, R. Y. The scattering and absorption of sound waves by a gas bubble 0 in a viscous liquid. Acoustica 33:173–179, 1975.

    Google Scholar 

  22. Nishi, R. Y., A. O. Brubakk, and O. S. Eftedal. Bubble detection. In: Bennett and Elliott's Physiology and Medicine of Diving, edited by A. O. Brubakk and T. S. Neuman. Saunders, London, UK, 2003, pp. 501–529.

  23. Nishi, R. Y., and B. C. Eatock. The role of ultrasonic bubble detection in table validation. In: Validation of Decompression Tables, edited by H. R. Schreiner and R. W. Hamilton. Undersea and Hyperbaric Medical Society, Bethesda, 1989, pp. 133–137.

  24. Payne, S. J., and M. A. Chappell. Automated determination of bubble grades from doppler ultrasound recordings. Aviation Space Environ. Med. 76:771–777, 2005.

    Google Scholar 

  25. Roy, E., S. Montresor, P. Abraham, and J.-L. Saumet. Spectrogram analysis of arterial Doppler signals for off-line automated HITS detection. Ultrasound Med. Biol. 25:349–359, 1999.

    Article  PubMed  Google Scholar 

  26. Sawatzky, K. D., and R. Y. Nishi. Assessment of inter-rater agreement on the grading of intravascular bubble signals. Undersea Biomed. Res. 18:373–396, 1991.

    PubMed  Google Scholar 

  27. Schneck, D. J. An outline of cardiovascular structure and function. In: The Biomedical Engineering Handbook, edited by J. D. Bronzino. CRC press and IEEE Press, Boca Raton, Fla., 2000, pp. 1–12.

    Google Scholar 

  28. Siebler, M., G. Rose, M. Sitzer, A. Bender, and H. Steinmetz. Real-time identification of cerebral microemboli with US feature detection by a neural network. Radiology 192:739, 1994.

    PubMed  Google Scholar 

  29. Strong, K., D. W. Westenskow, P. G. Fine, and J. A. Orr. A preliminary laboratory investigation of air embolus detection and grading using an artificial neural network. Int. J. Clin. Monit. Comput. 14:103–107, 1997.

    Article  PubMed  Google Scholar 

  30. Sutherland, J. Automated cardiac monitoring using holographic/quantum neural technology. PC AI 13:20–22, 1999.

    Google Scholar 

  31. Van Zuilen, E. V., W. H. Mess, C. Jansen, I. Van Der Tweel, J. Van Gijn, and R. G. A. Ackerstaff. Automatic embolus detection compared with human experts: A Doppler ultrasound study. Stroke 27:1840, 1996.

    PubMed  Google Scholar 

  32. Wu, Z., and N. E. Huang. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 460:1597–1611, 2004.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4