A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-5536-y below:

Flow Perfusion Culture of Marrow Stromal Cells Seeded on Porous Biphasic Calcium Phosphate Ceramics

References
  1. Buckwalter, J. A. Can tissue engineering help orthopaedic patients? Clinical needs and criteria for success. In: Tissue Engineering in Musculoskeletal Clinical Practice, edited by L. J. Sandell and A. J. Grodzinsky. American Academy of Orthopaedic Surgeons, 2004, pp. 3–16.

  2. Meyer, U., U. Joos, and H. P. Wiesmann. Biological and biophysical principles in extracorporeal bone tissue engineering. Part I. Int. J. Oral Maxillofac. Surg. 33:325–332, 2004.

    Article  PubMed  Google Scholar 

  3. Bancroft, G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, and A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 99:12,600–12,605, 2002.

  4. Holtorf, H. L., J. A. Jansen, and A. G. Mikos. Flow perfusion culture induces the osteoblastic differentiation of marrow stromal cell-scaffold constructs in the absence of dexamethasone. J. Biomed. Mater. Res. 72A:326–334, 2005.

    Article  Google Scholar 

  5. Sikavitsas, V. I., G. N. Bancroft, H. L. Holtorf, J. A. Jansen, and A. G. Mikos. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc. Natl. Acad. Sci. U.S.A. 100:14683–14688, 2003.

    Article  PubMed  Google Scholar 

  6. van den Dolder, J., G. N. Bancroft, V. I. Sikavitsas, P. H. Spauwen, J. A. Jansen, and A. G. Mikos. Flow perfusion culture of marrow stromal osteoblasts in titanium fiber mesh. J. Biomed. Mater. Res. 64A:235–241, 2003.

    Article  Google Scholar 

  7. Daculsi, G., O. Laboux, O. Malard, and P. Weiss. Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mater. Med. 14:195–200, 2003.

    Article  PubMed  Google Scholar 

  8. de Groot, K. Degradable ceramics. In: Biocompatibility of Clinical Implant Materials, edited by D. F. Williams. Boca Raton: CRC Press, 1981, pp. 199–222.

  9. Donath, K. Reaction of tissue to calcium phosphate ceramics. In: Osseointegrated Implants, edited by G. Heimke. Boca Raton: CRC Press, 1990, pp. 99–126.

    Google Scholar 

  10. Livingston, T. L., S. Gordon, M. Archambault, S. Kadiyala, K. Mcintosh, A. Smith, and S. J. Peter. Mesenchymal stem cells combined with biphasic calcium phosphate ceramics promote bone regeneration. J. Mater. Sci. Mater. Med. 14:211–218, 2003.

    Article  PubMed  Google Scholar 

  11. Ruhé, P. Q., H. C. Kroese-Deutman, J. G. C. Wolke, P. H. M. Spauwen and J. A. Jansen. Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials 25:2123–2132, 2004.

    Article  PubMed  Google Scholar 

  12. Blom, E. J., J. Klein-Nulend, C. P. A. T. Klein, K. Kurashina, M. A. J. van Waas, and E. H. Burger. Transforming growth factor-ß 1 incorporated during setting in calcium phosphate cement stimulates bone cell differentiation in vitro. J. Biomed. Mater. Res. 50:67–74, 2000.

    Article  PubMed  Google Scholar 

  13. Laffargue, P., P. Fialdes, P. Frayssinet, M. Rtaimate, H. F. Hildebrand, and X. Marchandise. Adsorption and release of insulin-like growth factor-1 on porous tricalcium phosphate implant. J. Biomed. Mater. Res. 49A:415–421, 2000.

    Article  Google Scholar 

  14. Toquet, J., R. Rohanizadeh, J. Guicheux, S. Couillaud, N. Passuti, G. Daculsi, and D. Heymann. Osteogenic potential in vitro of human bone marrow cells cultured on macroporous biphasic calcium phosphate ceramic. J. Biomed. Mater. Res. 44A:98–108, 1999.

    Article  Google Scholar 

  15. Kai, T., G. Shao-qing, and D. Geng-ting. In vivo evaluation of bone marrow stromal-derived osteoblasts-porous calcium phosphate ceramic composites as bone graft substitute for lumbar intervertebral spine fusion. Spine 28:1653–1658, 2003.

    Article  PubMed  Google Scholar 

  16. Goshima, J., V. M. Goldberg, and A. I. Caplan. Osteogenic potential of culture-expanded rat marrow cells as assayed in vivo with porous calcium phosphate ceramic. Biomaterials 12:253–258, 1991.

    Article  PubMed  Google Scholar 

  17. Ohgushi, H., M. Okumura, S. Tamai, E. C. Shors, and A. I. Caplan. Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: A comparative histomorphometric study of ectopic bone formation. J. Biomed. Mater. Res. 24A:1563–1570, 1990.

    Article  Google Scholar 

  18. Gomes, M. E., V. I. Sikavitsas, E. Behravesh, R. L. Reis, and A. G. Mikos. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. 67A:87–95, 2003.

    Article  Google Scholar 

  19. Sikavitsas, V. I., G. N. Bancroft, J. J. Lemoine, M. A. K. Liebschner, M. Dauner, and A. G. Mikos. Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable non-woven fiber mesh scaffolds. Ann. Biomed. Eng. 33:63–70, 2005.

    Article  PubMed  Google Scholar 

  20. Maniatopoulos, C., J. Sodek, and A. H. Melcher. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res. 254:317–330, 1988.

    Article  PubMed  Google Scholar 

  21. Bancroft, G. N., V. I. Sikavitsas, and A. G. Mikos. Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng. 9:549–554, 2003.

    Article  PubMed  Google Scholar 

  22. Singer, V. L., L. J. Jones, S. T. Yue, and R. P. Haugland. Characterization of picogreen reagent and development of a fluorescence-based solution assay for double-stranded dna quantitation. Anal. Biochem. 249:228–238, 1997.

    Article  PubMed  Google Scholar 

  23. Bretaudiere, J.-P., and T. Spillman. Alkaline phosphatases, routine method. In: Methods of Enzymatic Analysis, edited by H. U. Bergmeyer, J. Bergmeyer and M. Graß l. Deerfield Beach, Florida: Verlag Chemie, 1984, pp. 75–82.

  24. Tezuka, K., T. Sato, H. Kamioka, P. J. Nijweide, K. Tanaka, T. Matsuo, M. Ohta, N. Kurihara, Y. Hakeda, and M. Kumegawa. Identification of osteopontin in isolated rabbit osteoclasts. Biochem. Biophys. Res. Commun. 186:911–917, 1992.

    Article  PubMed  Google Scholar 

  25. Aubin, J. E. Osteogenic cell differentiation. In: Bone Engineering, edited by J. E. Davies. Toronto: em squared incorporated, 2000, pp. 19–29.

    Google Scholar 

  26. Johnson, K. D., K. E. Frierson, T. S. Keller, S. Cook, R. Scheinberg, J. Zerwekh, L. Meyers, and M. F. Sciadini. Porous ceramics as bone graft substitutes in long bone defects: A biomechanical, histological, and radiographic analysis. J. Orthop. Res. 14:351–369, 1996.

    Article  PubMed  Google Scholar 

  27. Ohgushi, H., V. M. Goldberg, and A. I. Caplan. Repair of bone defects with marrow cells and porous ceramic. Experiments in rats. Acta Orthop. Scand. 60:334–339, 1989.

    PubMed  Google Scholar 

  28. Vuola, J., H. Goransson, T. Bohling, and S. Asko-Seljavaara. Bone marrow induced osteogenesis in hydroxyapatite and calcium carbonate implants. Biomaterials 17:1761–1766, 1996.

    Article  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4