A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-3238-0 below:

Endothelial Cell–Smooth Muscle Cell Co-Culture in a Perfusion Bioreactor System

References
  1. Absher, M., J. Woodcock-Mitchell, J. Mitchell, L. Baldor, R. Low, and D. Warshaw. Characterization of vascular smooth muscle cell phenotype in long-term culture. In Vitro Cell Dev. Biol. 25(2):183–192, 1989.

    PubMed  Google Scholar 

  2. Antonelli-Orlidge, A., K. B. Saunders, S. R. Smith, and P. A. D’Amore. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. U.S.A. 86(12):4544–4548, 1989.

    PubMed  Google Scholar 

  3. Bernanke, D. H., and J. M. Velkey. Development of the coronary blood supply: Changing concepts and current ideas. Anat. Rec. 269(4):198–208, 2002.

    Article  PubMed  Google Scholar 

  4. Campbell, G. CJH: Phenotypic Modulation of Smooth Muscle Cells in Primary Culture. Vacular Smooth Muscle in Culture. Boston: CRC Press, 1985.

    Google Scholar 

  5. Campbell, J. H., and G. R. Campbell. Endothelial cell influences on vascular smooth muscle phenotype. Annu. Rev. Physiol. 48:295–306, 1986.

    Article  PubMed  Google Scholar 

  6. Casscells, W. Migration of smooth muscle and endothelial cells. Critical events in restenosis. Circulation 86(3):723–729, 1992.

    PubMed  Google Scholar 

  7. Chiu, J. J., L. J. Chen, C. N. Chen, P. L. Lee, and C. I. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37(4):531–539, 2004.

    Article  PubMed  Google Scholar 

  8. Chiu, J. J., L. J. Chen, P. L. Lee, C. I. Lee, L. W. Lo, S. Usami, and S. Chien. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 101(7):2667–2674, 2003.

    Article  PubMed  Google Scholar 

  9. Davies, P. F. Vascular cell interactions with special reference to the pathogenesis of atherosclerosis. Lab. Invest. 55(1):5–24, 1986.

    PubMed  Google Scholar 

  10. Dora, K. A. Cell–cell communication in the vessel wall. Vasc. Med. 6(1):43–50, 2001.

    Article  PubMed  Google Scholar 

  11. Farndale, R. W., C. A. Sayers, and A. J. Barrett. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res. 9(4):247–248, 1982.

    PubMed  Google Scholar 

  12. Fillinger, M. F., S. E. O’Connor, R. J. Wagner, and J. L. Cronenwett. The effect of endothelial cell coculture on smooth muscle cell proliferation. J. Vasc. Surg. 17(6):1058–1067 (discussion 1067–1068), 1993.

    Article  PubMed  Google Scholar 

  13. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60(4):607–612, 2002.

    Article  PubMed  Google Scholar 

  14. Hayter, A. Probability and Statistics for Engineers and Scientists. Boston: PWS, 1996.

    Google Scholar 

  15. Heydarkhan-Hagvall, S., G. Helenius, B. R. Johansson, J. Y. Li, E. Mattsson, and B. Risberg. Co-culture of endothelial cells and smooth muscle cells affects gene expression of angiogenic factors. J. Cell Biochem. 89(6):1250–1259, 2003.

    Article  PubMed  Google Scholar 

  16. Imberti, B., D. Seliktar, R. M. Nerem, and A. Remuzzi. The response of endothelial cells to fluid shear stress using a co-culture model of the arterial wall. Endothelium 9(1):11–23, 2002.

    Article  PubMed  Google Scholar 

  17. Kim, B. S., and D. J. Mooney. Engineering smooth muscle tissue with a predefined structure. J. Biomed. Mater. Res. 41(2):322–332, 1998.

    PubMed  Google Scholar 

  18. L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56, 1998.

    PubMed  Google Scholar 

  19. Lyubimov, E. V., and A. I. Gotlieb. Smooth muscle cell growth in monolayer and aortic organ culture is promoted by a nonheparin binding endothelial cell-derived soluble factor/s. Cardiovasc. Pathol. 13(3):139–145, 2004.

    Article  PubMed  Google Scholar 

  20. Merrilees, M. J., J. H. Campbell, E. Spanidis, and G. R. Campbell. Glycosaminoglycan synthesis by smooth muscle cells of differing phenotype and their response to endothelial cell conditioned medium. Atherosclerosis 81(3):245–254, 1990.

    PubMed  Google Scholar 

  21. Merrilees, M. J., and L. Scott. Interaction of aortic endothelial and smooth muscle cells in culture. Effect on glycosaminoglycan levels. Atherosclerosis 39(2):147–161, 1981.

    PubMed  Google Scholar 

  22. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284(5413):489–493, 1999.

    Article  PubMed  Google Scholar 

  23. Orlidge, A., and P. A. D’Amore. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105(3):1455–1462, 1987.

    PubMed  Google Scholar 

  24. Powell, R. J., J. Hydowski, O. Frank, J. Bhargava, and B. E. Sumpio. Endothelial cell effect on smooth muscle cell collagen synthesis. J. Surg. Res. 69(1):113–118, 1997.

    PubMed  Google Scholar 

  25. Risau, W. Differentiation of endothelium. FASEB J. 9(10):926–933, 1995.

    PubMed  Google Scholar 

  26. Saunders, K. B., and P. A. D’Amore. An in vitro model for cell–cell interactions. In Vitro Cell Dev. Biol. 28A(7/8):521–528, 1992.

    PubMed  Google Scholar 

  27. Shireman, P. K., and W. H. Pearce. Endothelial cell function: Biologic and physiologic functions in health and disease. AJR Am. J. Roentgenol. 166(1):7–13, 1996.

    PubMed  Google Scholar 

  28. Shum-Tim, D., U. Stock, J. Hrkach, T. Shinoka, J. Lien, M. A. Moses, A. Stamp, G. Taylor, A. M. Moran, W. Landis, R. Langer, J. P. Vacanti, and J. E. Mayer Jr. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann. Thorac Surg. 68(6):2298–2304 (discussion 2305), 1999.

    PubMed  Google Scholar 

  29. Wada, Y., A. Sugiyama, T. Kohro, M. Kobayashi, M. Takeya, M. Naito, and T. Kodama. In vitro model of atherosclerosis using coculture of arterial wall cells and macrophage. Yonsei Med. J. 41(6):740–755, 2000.

    PubMed  Google Scholar 

  30. Waybill, P. N., V. M. Chinchilli, and B. J. Ballermann. Smooth muscle cell proliferation in response to co-culture with venous and arterial endothelial cells. J. Vasc. Interv. Radiol. 8(3):375–381, 1997.

    PubMed  Google Scholar 

  31. Waybill, P. N., and L. J. Hopkins. Arterial and venous smooth muscle cell proliferation in response to co-culture with arterial and venous endothelial cells. J. Vasc. Interv. Radiol. 10(8):1051–1057, 1999.

    PubMed  Google Scholar 

  32. Williams, C., and T. M. Wick. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 10(5/6):930–941, 2004.

    PubMed  Google Scholar 

  33. Woessner, J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93:440–447, 1961.

    PubMed  Google Scholar 

  34. Ziegler, T., R. W. Alexander, and R. M. Nerem. An endothelial cell–smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23(3):216–225, 1995.

    PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4