A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-2867-7 below:

A Model for Detecting Balance Impairment and Estimating Falls Risk in the Elderly

References
  1. American Academy of Orthopaedic Surgeons. Don’t let a FALL be your last TRIP. 1998.

  2. Chau, T. A review of analytical techniques for gait data. Part 2: Neural network and wavelet methods. Gait Posture 13:102–120, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Chou, L.-S., K. R. Kaufman, R. H. Brey, and L. F. Draganich. Motion of the whole body’s center of mass when stepping over obstacles of different heights. Gait Posture 13:17–26, 2001.

    Article  CAS  PubMed  Google Scholar 

  4. Chou, L. S., K. R. Kaufman, M. E. Hahn, and R. H. Brey. Medio-lateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance. Gait Posture 18:125–133, 2003.

    Article  PubMed  Google Scholar 

  5. Coogler, C. E. Falls and imbalance. Rehab. Manag. (April/May), 53, 1992.

  6. Graafmans, W. C., M. E. Ooms, H. M. Hofstee, P. D. Bezemer, L. M. Bouter, and P. Lips. Falls in the elderly: A prospective study of risk factors and risk profiles. Am. J. Epidemiol. 143:1129–1136, 1996.

    CAS  PubMed  Google Scholar 

  7. Hahn, M. E., and L. S. Chou. Can motion of individual body segments identify dynamic instability in the elderly? Clin. Biomech. 18:737–744, 2003.

    Article  Google Scholar 

  8. Hahn, M. E., A. M. Farley, V. Lin, and L. S. Chou. Neural network estimation of balance control during locomotion. J. Biomech. 38:717–724, 2005.

    Article  PubMed  Google Scholar 

  9. Hahn, M. E., H. J. Lee, and L. S. Chou. Increased muscular challenge in older adults during obstructed gait. Gait Posture, in press.

  10. Halfon, P., Y. Eggli, G. Van Melle, and A. Vagnair. Risk of falls for hospitalized patients: A predictive model based on routinely available data. J. Clin. Epidemiol. 54:1258–1266, 2001.

    Article  CAS  PubMed  Google Scholar 

  11. Haykin, S. Neural Networks: A Comprehensive Foundation. New York: MacMillan College Publishing Co, 1994.

    Google Scholar 

  12. Holzreiter, S. H., and M. E. Kohle. Assessment of gait patterns using neural networks. J. Biomech. 26:45–651, 1993.

    Article  Google Scholar 

  13. Jian, Y., D. A. Winter, M. G. Ishac, and L. Gilchrist, Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1:9–22, 1993.

    Article  Google Scholar 

  14. Izumi, K., K. Makimoto, M. Kato, and T. Hiramatsu. Prospective study of fall risk assessment among institutionalized elderly in Japan. Nursing Health Sci. 4:141–147, 2002.

    Article  Google Scholar 

  15. Lafuente, R., J. M. Belda, J. Sanchez-Lacuesta, C. Soler, and J. Prat. Design and test of neural networks and statistical classifiers in computer-aided movement analysis: A case study on gait analysis. Clin. Biomech. 13:216–229, 1998.

    Article  Google Scholar 

  16. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Quart. Appl. Math. 2:164–168, 1944.

    Google Scholar 

  17. Maki, B. E., P. J. Holliday, and A. K. Topper. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 49:M72–M84, 1994.

    CAS  PubMed  Google Scholar 

  18. Marquardt, D. W. An algorithm for least squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431–441, 1963.

    Article  Google Scholar 

  19. Meglan, D. A. Enhanced Analysis of Human Locomotion, Ph.D. Dissertation, The Ohio State University, OH, USA, 1991.

  20. Prentice, S. D., A. E. Patla, and D. A. Stacey. Simple artificial neural network models can generate basic muscle activity patterns for human locomotion at different speeds. Exp. Brain Res. 123:474–480, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Prentice, S. D., A. E. Patla, and D. A. Stacey. Artificial neural network model for the generation of muscle activation patterns for human locomotion. J. Electromyo. Kinesiol. 11:19–30, 2001.

    Article  CAS  Google Scholar 

  22. Province, M. A. The effects of exercise on falls in elderly patients: A preplanned meta-analysis of the FICSIT trials. JAMA 273: 1341–1347, 1995.

    Article  CAS  PubMed  Google Scholar 

  23. Rumelhart, D. E., G. E. Hinton, and R. J. Williams. Learning representations by back-propagation errors. Nature 323:533–536, 1986.

    Article  Google Scholar 

  24. Savelberg, H. H., and A. L. de Lange. Assessment of the horizontal, fore-aft component of the ground reaction force from insole pressure patterns by using artificial neural networks. Clin. Biomech. 14:585–92, 1999.

    Article  CAS  Google Scholar 

  25. Sepulveda, F., D. M. Wells, and C. L. Vaughan. A neural network representation of electromyography and joint dynamics in human gait. J. Biomech. 26:101–109, 1993.

    Article  CAS  PubMed  Google Scholar 

  26. Shumway-Cook, A., M. Baldwin, N. L. Polissar, and W. Gruber. Predicting the probability of falls in community-dwelling older adults. Phys. Ther. 77:812–819, 1997.

    CAS  PubMed  Google Scholar 

  27. Shumway-Cook, A., S. Brauer, and M. Woollacott. Predicting the probability of falls in community-dwelling older adults using the Timed Up & Go test. Phys. Ther. 80:896–903, 2000.

    CAS  PubMed  Google Scholar 

  28. Stalenhoef, P. A., J. P. M. Diedriks, J. A. Knottnerus, A. D. M. Kester, and H. F. J. M. Crebholder. A risk model for the prediction of recurrent falls in community-dwelling elderly: A prospective cohort study. J. Clin. Epidemiol. 55:1088–1094, 2002.

    Article  CAS  PubMed  Google Scholar 

  29. Su, F.-C., and W.-L. Wu. Design and testing of a genetic algorithm neural network in the assessment of gait patterns. Med. Eng. Phys. 22:67–74, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240:1285–1293, 1988.

    CAS  PubMed  Google Scholar 

  31. Topper, A. K., B. E. Maki, and P. J. Holliday. Are activity-based assessments of balance and gait in the elderly predictive of risk of falling and/or type of fall? J. Am. Geriatr. Soc. 41:479–487, 1993.

    CAS  PubMed  Google Scholar 

  32. Tromp, A. M., S. M. F. Pluijm, J. H. Smit, D. J. H. Deeg, L. M. Bouter, and P. Lips. Fall-risk screening test: A prospective study on predictors for falls in community-dwelling elderly. J. Clin. Epidemiol. 54:837–844, 2001.

    Article  CAS  PubMed  Google Scholar 

  33. Wolfson, L., R. Whipple, C. Derby, J. Judge, M. King, P. Amerman, J. Schmidt, and D. Smyers. Balance and strength training in older adults: Intervention gains and Tai Chi maintenance. J. Am. Ger. Soc. 44: 498–506, 1996.

    CAS  Google Scholar 

  34. Woltring, H. J. A FORTRAN package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Software 8:104–113, 1986.

    Article  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4