Andersson-Engels, S., J. Johansson, and S. Svanberg. The use of time-resolved fluorescence for diagnosis of atherosclerotic plaque and malignant tumors. Spectrochim. Acta 40A:1203–1210, 1990.
Badea, M., and L. Brand. Time resolved fluorescence measurements. Methods Enzymol. 61:378–425, 1979.
Baraga, J. J., P. Taroni, Y. D. Park, K. An, A. Maestri, L. L. Tong, R. P. Rava, C. Kittrell, R. R. Dasari, and M. S. Feld. Ultraviolet laser induced fluorescence of human aorta. Spectrochim. Acta 45:95–99, 1989.
Beechem, J. M., E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand. The global analysis of fluorescence intensity and anisotropy decay data: Second-generation theory and programs. In: Topics in Fluorescence Spectroscopy, edited by J. R. Lakowicz. New York: Plenum Press, 1991, pp. 241–305.
Bruce, E. N. Biomedical Signal Processing and Signal Modeling. New York: Wiley Series in Telecommunications and Signal Processing, 2001.
Cubeddu, R., D. Comelli, D. C. D’Andrea, P. Taroni, and G. Valentini. Time-resolved fluorescence imaging in biology and medicine. J. Phys. D: Appl. Phys. 35:61–76, 2002.
Faddeev, D. K., and V. N. Faddeeva, Computational Methods of Linear Algebra. San Francisco: W.H. Freeman, 1963.
Fang, Q., T. Papaioannou, J. A. Jo, R. Vaitha, and K. Shastry. Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics. Rev. Sci. Instrum. 75:151–162, 2004.
Gafni, A., R. L. Modlin, and L. Brand. Analysis of fluorescent decay curves by means of the Laplace transformation. Biophys. J. 15:263–280, 1975.
Grinvald, A. The use of standards in the analysis of fluorescence decay data. Anal. Biochem. 30:261–279, 1976.
Grinvald, A., and I. Z. Steinberg. On the analysis of fluorescence decay kinetics by the method of least squares. Anal. Biochem. 59:583–598, 1974.
Glanzmann, T., J. P. Ballini, H. van den Bergh, and G. Wagnieres. Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy. Rev. Sci. Instrum. 70:4067–4077, 1999.
Golub, G. H., and C. F. Van Loan. Matrix Computations. Baltimore: The Johns Hopkins University Press, 1983.
Jo, J. A., Q. Fang, T. Papaioannou, and L. Marcu. Fast model-free deconvolution of fluorescence decay for analysis of biological systems. J. Biomed. Opt. 9(4):743–752, 2004.
Khoo, M. Physiological Control Systems: Analysis, Simulation and Estimation. New York: IEEE Press Series in Biomedical Engineering, 2000.
Kalaba, R. E., and N. Rasakhoo. Algorithms for generalized inverses. J. Opt. Th. Appl. 48:427–435, 1986.
Kalaba, R. E., and K. Springarn. Control, Identification and Input Optimization. New York: Plenum Press, 1982.
Lakowicz, J. R. Principles of Fluorescent Spectroscopy, 2nd ed. New York: Kluwer Academic/Plenum, 1999.
Lampert, R. A., L. A. Chewter, and D. Phillips. Standards for nanosecond fluorescence decay time measurement. Anal. Chem. 55:68–73, 1983.
Maarek, J. M. I., L. Marcu, W. J. Snyder, and W. S. Grundfest. Time-resolved fluorescence spectra of arterial fluorescent compounds reconstruction with Laguerre expansion technique. Photochem. Photobiol. 71:178–187, 2000.
Marcu, L., M. C. Fishbein, J. M. Maarek, and W. S. Grundfest. Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy. Atheroscl. Thromb. Vasc. Biol. 21:1244–1250, 2001.
Marcu, L., W. S. Grundfest, and M. C. Fishbein. Time-resolved laser-induced fluorescence spectroscopy for staging atherosclerotic lesions. In: Fluorescence in Biomedicine, edited by M. A. Mycek, and B. Pogue. New York: Marcel Dekker, 2003, pp. 397–430.
Manly, B. F. J. Randomization, Bootstrap, and Monte Carlo Methods in Biology. New York: Wiley, 1997.
Marmarelis, V. Z. Identification of nonlinear biological systems using Laguerre expansion of kernels. Ann. Biomed. Eng. 21:573–589, 1993.
Marmarelis, V. Z. Modeling methodology for nonlinear physiological systems. Ann. Biomed. Eng. 25:239–251, 1997.
McGown, L. B. Fluorescence lifetime filtering. Anal. Chem. 61:839–847, 1989.
O’Connor, D. V., and D. Phillips. Time-Correlated Single Photon Counting. London: Academic Press, 1984.
O’Connor, D. V., W. R. Ware, and J. C. Andre. Deconvolution of fluorescence decay curves. A critical comparison of techniques. J. Phys. Chem. 83:1333–1343, 1979.
Proakis, J. G., and D. G. Manolakis. Digital Signal Processing. Principles, Algorithms, and Applications. Upper Saddle River: Prentice Hall, 1996.
Proakis, J. G. Digital Communications, 4th ed. McGraw-Hill, 2001.
Stavridi, M., V. Z. Marmarelis, and W. S. Grundfest. Spectro-temporal studies of Xe–Cl excimer laser induced arterial wall fluorescence. Med. Eng. Phys. 17:595–601, 1995.
Tellinghuisen, J., and C. W. Wilkerson, Jr. Bias and precision in the estimation of exponential decay parameters from sparse data. Anal. Chem. 65:1240–1246, 1993.
Vallotton, P., and R. Vogel. Parameter recovery in frequency-domain time-resolved fluorescent spectroscopy; resolution off the prototropic forms of 5-carboxyfluorescein in the physiological pH range. J. Fluoresc. 10:325–332, 2000.
Ware, W. R., L. J. Doemeny, and T. L. Nemzek. Deconvolution of fluorescence and phosphorescence decay curves. A least squares method. J. Phys. Chem. 77:2038–2048, 1973.
Webb, S. E. D., Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French. A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning. Rev. Sci. Instrum. 73:1898–1907, 2002.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4