A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/article/10.1007/s10439-005-2506-3 below:

Large Deformation Finite Element Analysis of Micropipette Aspiration to Determine the Mechanical Properties of the Chondrocyte

References
  1. Baaijens, F. An U-ALE formulation of 3-D unsteady viscoelastic flow. Int. J. Numer. Methods Eng. 36:1115–1143, 1993.

    Google Scholar 

  2. Bachrach, N., W. Valhmu, E. Stazzone, A. Ratcliffe, W. Lai, and V. Mow. Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associated with the time-dependent changes in their mechanical environment. J. Biomech. 28:1561–1570, 1995.

    Article  CAS  PubMed  Google Scholar 

  3. Guilak, F. Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529–1542, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Guilak, F., G. Erickson, and H. Ting-Beall. The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys. J. 82:720–727, 2002.

    CAS  PubMed  Google Scholar 

  5. Guilak, F., and V. Mow. The mechanical environment of the chondrocyte: A biphasic finite element model of cell–matrix interactions in articular cartilage. J. Biomech. 33:1663–1673, 2000.

    Article  CAS  PubMed  Google Scholar 

  6. Guilak, F., R. L. Sah, and L. A. Setton. Physical Regulation of Cartilage Metabolism, In: Mow VC, Hayes W. C., Editors. Basic Orthopaedic Biomechanics. 2nd ed. Philadelphia: Lippincott-Raven; 1997, p. 179–207.

    Google Scholar 

  7. Haider, M., and F. Guilak. An axisymmetric boundary integral model for incompressible linear viscoelasticity: Application to the micropipette aspiration contact problem. J. Biomech. Eng. 122:236–244, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Haider, M., and F. Guilak. An axisymmetric boundary integral model for assessing elastic cell properties in the micropipette aspiration contact problem. J. Biomech. Eng. 124:586–595, 2002.

    Article  PubMed  Google Scholar 

  9. Hochmuth, R. Micropipette aspiration of living cells. J. Biomech. 33:15–22, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Hung, C., K. Costa, and X. Guo. Apparent and transient mechanical properties of chondrocytes during osmotic loading using triphasic theory and afm indentation. ASME Bioeng. Conf. BED-50:625–626, 2001.

    Google Scholar 

  11. Jones, W., H. Ting-Beall, G. Lee, S. Kelley, R. Hochmuth, and F. Guilak. Alterations in the young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Koay, E., A. Shien, and K. Athanasiou. Creep indentation of single cells. J. Biomech. Eng. 125(3):334–341, 2003.

    Article  PubMed  Google Scholar 

  13. Mow, V., S. Kuei, W. Lai, and C. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    CAS  PubMed  Google Scholar 

  14. Mow, V., D. Sun, X. Guo, C. Hung, and W. Lai. Chondrocyte-extracellular matrix interactions during osmotic swelling. ASME Bioeng. Conf. BED42:133–134, 1999.

    Google Scholar 

  15. Poole, R. Imbalances of Anabolism and Catabolism of Cartilage Matrix Components in Osteoarthritis. In: Keuttner, K. E., Goldberg, V. M., eds. Osteoarthritic Disorders. AAOS Press, Rosemont, Illinois, USA, 1995, p. 247–260.

    Google Scholar 

  16. Sato, M., D. Theret, L. Wheeler, N. Ohshima, and R. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268, 1990.

    CAS  PubMed  Google Scholar 

  17. Sengers, B., C. Oomens, and F. Baaijens. An integrated finite element approach to mechanics, transport and biosynthesis in tissue engineering. J. Biomech. Eng. 126:82–91, 2004.

    Article  PubMed  Google Scholar 

  18. Setton, L., W. Zhu, and V. Mow. The biphasic poroviscoelastic behavior of articular cartilage: Role of the surface zone in governing the compressive behavior. J. Biomech. 26:581–592, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Shin, D., and K. Athanasiou. Cytoindentation for obtaining cell biomechanical properties. J. Orthop. Res. 17:880–890, 1999.

    CAS  PubMed  Google Scholar 

  20. Theret, D., M. Levesque, M. Sato, R. Nerem, and L. Wheeler. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. J. Biomech. Eng. 110:190–199, 1988.

    CAS  PubMed  Google Scholar 

  21. Trickey, W., F. Baaijens, T. Laursen, L. Alexopoulos, and F. Guilak. Determination of the Poisson’s ratio of the cell: Recovery properties of chondrocytes after release from complete micropipette aspiration. J. Biomech. (Submitted), 2004a.

  22. Trickey, W., G. Lee, and F. Guilak. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 18:891–898, 2000.

    CAS  PubMed  Google Scholar 

  23. Trickey, W., T. Vail, and F. Guilak. The role of the cytoskeleton in the viscoelastic properties of human articular chondrocytes. J. Orthop. Res. 22:131–139, 2004b.

    Google Scholar 

  24. Wilkes, R., and K. Athanasiou. The intrinsic incompressibility of osteoblast-like cells. Tissue Eng. 2:167–181, 1996.

    Google Scholar 

  25. Wu, J., W. Herzog, and M. Epstein. Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading. J. Biomech. 32:563–572, 1999.

    CAS  PubMed  Google Scholar 

Download references


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4