Barbee, K. A. Role of subcellular shear-stress distributions in endothelial cell mechanotransduction. Ann. Biomed. Eng. 30: 472–482, 2002.
Barbee, K. A., T. Mundel, R. Lal, and P. F. Davies. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am. J. Physiol. 268:H1765–H1772, 1995.
Buchanan, J. R., Jr., C. Kleinstreuer, G. A. Truskey, and M. Lei. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis 143:27–40, 1999.
Buchanan, J. R., C. Kleinstreuer, S. Hyun, and G. A. Truskey. Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J. Biomech. 36:1185–1196, 2003.
Butler, P. J., G. Norwich, S. Weinbaum, and S. Chien. Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity. Am. J. Physiol. Cell Physiol. 280:C962–C969, 2001.
Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B. Biol. Sci. 177:109–159, 1971.
Conklin, B. S., D. S. Zhong, W. Zhao, P. H. Lin, and C. Chen. Shear stress regulates occludin and VEGF expression in porcine arterial endothelial cells. J. Surg. Res. 102:13–21, 2002.
DePaola, N., M. A. Gimbrone Jr., P. F. Davies, and C. F. Dewey Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.
Fry, D. L. Aortic Evans blue dye accumulation: Its measurement and interpretation. Am. J. Physiol. 232:H204–H222, 1977.
Fry, D. L., E. E. Herderick, and D. K. Johnson. Local intimal-medial uptakes of 125I-albumin, 125I-LDL, and parenteral Evans blue dye protein complex along the aortas of normocholesterolemic minipigs as predictors of subsequent hypercholesterolemic atherogenesis. Arterioscler. Thromb. 13:1193–1204, 1993.
Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskel. 40:317–330, 1998.
Girard, P. R., and R. M. Nerem. Shear stress modulates endothelial cell morphology and F-actin organization through the regulation of focal adhesion-associated proteins. J. Cell Physiol. 163:179–193, 1995.
Helmke, B. P., and P. F. Davies. The cytoskeleton under external fluid mechanical forces: Hemodynamic forces acting on the endothelium. Ann. Biomed. Eng. 30:284–296, 2002.
Henderson, J. M., J. A. Aukerman, P. A. Clingan, and M. H. Friedman. Effect of alterations in femoral artery flow on abdominal vessel hemodynamics in swine. Biorheology 36:257–266, 1999.
Himburg, H. A., D. M. Grzybowski, A. L. Hazel, J. A. LaMack, X. M. Li, and M. H. Friedman. Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am. J. Physiol. Heart Circ. Physiol. 286:H1916–H1922, 2004.
Hyun, S., C. Kleinstreuer, and J. P. Archie Jr. Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. Med. Eng. Phys. 22:13–27, 2000.
Jo, H., R. O. Dull, T. M. Hollis, and J. M. Tarbell. Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol. 260:H1992–H1996, 1991.
Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.
Kuchan, M. J., and J. A. Frangos. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am. J. Physiol. 264:H150–H156, 1993.
Lei, M., C. Kleinstreuer, and G. A. Truskey. Numerical investigation and prediction of atherogenic sites in branching arteries. J. Biomech. Eng. 117:350–357, 1995.
Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.
Mohan, S., M. Hamuro, G. P. Sorescu, K. Koyoma, E. A. Sprague, H. Jo, A. J. Valente, T. J. Prihoda, and M. Natarajan. IkappaBalpha-dependent regulation of low-shear flow-induced NF-kappa B activity: Role of nitric oxide. Am. J. Physiol. Cell Physiol. 284:C1039–C1047, 2003.
Moore, J. E., Jr., C. Xu, S. Glagov, C. K. Zarins, and D. N. Ku. Fluid wall shear stress measurements in a model of the human abdominal aorta: Oscillatory behavior and relationship to atherosclerosis. Atherosclerosis 110:225–240, 1994.
Nagel, T., N. Resnick, C. F. Dewey Jr., and M. A. Gimbrone Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825-34, 1999.
Phelps, J. E., and N. DePaola. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am. J. Physiol. Heart Circ. Physiol. 278:H469–H476, 2000.
Remuzzi, A., C. F. Dewey Jr., P. F. Davies, and M. A. Gimbrone Jr. Orientation of endothelial cells in shear fields in vitro. Biorheology 21:617–630, 1984.
Satcher, R. L., Jr., and C. F. Dewey Jr. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys. J. 71:109–118, 1996.
Shyy, Y. J., H. J. Hsieh, S. Usami, and S. Chien. Fluid shear stress induces a biphasic response of human monocyte chemotactic protein 1 gene expression in vascular endothelium. Proc. Natl. Acad. Sci. U.S.A. 91:4678–4682, 1994.
Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone Jr., and C. F. Dewey Jr. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.
Thomas, J. B., J. S. Milner, B. K. Rutt, and D. A. Steinman. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation. Ann. Biomed. Eng. 31:132–141, 2003.
Truskey, G. A., K. M. Barber, T. C. Robey, L. A. Olivier, and M. P. Combs. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. J. Biomech. Eng. 117:203–210, 1995.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4