Bevington, P. R., and D. K. Robinson. Data Reduction and Error Analysis for the Physical Sciences. 2nd ed. New York: McGraw-Hill, 1992.
Bhowmick, S., C. A. Khamis, and J. C. Bischof. Response of a liver tissue slab to a hyperosmotic sucrose boundary condition: Microscale cellular and vascular level effects. Ann. NY Acad. Sci. 858:147–162, 1998.
Bidault, N. P., B. E. Hammer, and A. Hubel. Water content in an engineering dermal replacement during permeation of Me2SO solutions using rapid MR imaging. Biotechnol. Prog. 17:530–536, 2001.
Cussler, E. L. Diffusion: Mass transfer in fluid systems, 2nd ed. New York, NY: Cambridge University Press, 1997.
Devireddy, R. V. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water. Mol. Reprod. Dev. 70:333–343, 2005.
Devireddy, R. V., D. J. Smith, and J. C. Bischof. Mass transfer during freezing in rat prostate tumor tissue. AIChE J. 45:639–654, 1999.
Diller, K. R., and M. E. Lynch. An irreversible thermodynamic analysis of cell freezing in the presence of membrane permeable additives. Cryo-Letters 4:295–308, 1983.
Fedorow, C., L. E. McGann, and G. S. Korbutt. Osmotic and cryoprotectant permeation characteristics of islet cells isolated from the newborn pig pancreas. Cell Transplant. 10:651–659, 2001.
Gilmore, J. A., J. Liu, D. Y. Gao, and J. K. Crister. Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum. Reproduc. 12:112–118, 1997.
Katchalsky, A., and P. F. Curran. Non-equilibrium thermodynamics in biophysics. Harvard Univ. Press, Cambridge, MA, 1965.
Kedem, O., and A. Katchalsky. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27:229–246, 1958.
Kleinhans, F. W. Membrane permeability modeling: Kedem-Katchalsky vs a two-parameter formalism. Cryobiology 37:271–289, 1998.
Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (London) 52:409–415, 1919.
LeGal, F., P. Gasqui, and J. P. Renard. Differential osmotic behavior of mammalian oocytes before and after maturation: A quantitative analysis using goat oocytes as a model. Cryobiology 31:154–170, 1994.
Leibo, S. P. Water permeability and survival of frozen-thawed mouse ova and embryos. Cryobiology 16:603, 1979.
Levin, R. L. Osmotic effects of introducing and removing permeable cryoprotectants: perfused tissues and organs. In: Advances in Bioengineering New York: ASME Press, 1981, pp. 131–134.
Levin, R. L., and T. W. Miller. An optimum method for the introduction or removal of permeable cryoprotectants: Isolated cell. Cryobiology 18:32–48, 1981.
Leypoldt, J. K. Solute tranposrt across the peritoneal membrane. J. Am. Soc. Nephrol. 13:S84–S91, 2002.
Lide, D. R. CRC Handbook of chemistry and physics, 84th ed. CRC Press: Boca Raton, FL, 2003.
Mazur, P. Freezing of living cells: Mechanisms and implications. Am. J. Physiol. 247:C125–C142, 1984.
McGann, L. E. Mammalian cell water permeability to water and to dimethylsulfoxide. Cryobiology 16:591, 1979.
McGrath, J. J. A microscope diffusion chamber for the determination of the equilibrium and non-equilibrium osmotic response of individual cells. J. Microscopy 139:249–263, 1985.
McGrath, J. J. In: Low temperature biotechnology: Emerging applications and engineering contributions, edited by J. J. McGrath and K. R. Diller, BED-Vol. 10, HTD-Vol. 98. New York: ASME Press, 1988, pp. 273–330.
Montgomery, D. C., and G. C. Runger. Applied Statistics and Probability for Engineers. New York: John Wiley & Sons, 1994, pp. 471–529.
Muldrew, K., B. Sykes, N. Schachar, and L. E. McGrann. Permeation kinetics of dimethylsulfoxide in articular cartilage. Cryo-Letters 17:331–340, 1996.
Patlak, C. S., D.A. Goldstein, and J. F. Hoffman. The flow of solute and solvent across a two-membrane system. J. Theor. Biol. 5:426–442, 1963.
Paynter, S. J., B. J. Fuller, and R. W. Shaw. Temperature dependence of mature mouse oocyte membrane permeabilities in the presence of a cryoprotectant. Cryobiology 34:122–130, 1997.
Pazhayannur, P. V., and J. C. Bischof. Measurement and simulation of water transport during freezing in mammalian liver tissue. ASME J. Biomech. Eng. 119:269–277, 1997.
Perry, R. H., and D.W. Green. Perry’s chemical engineers’ handbook, 7th ed., New York, NY: McGraw-Hill, 1997.
Poling, B. E., J. M. Prausnitz, and J. P. O’Connell. The properties of gases and liquids, 5th ed. New York, NY: McGraw-Hill, 2000.
Shabana, M., and J. J. McGrath. Cryomicroscope investigation and thermodynamic modeling of the freezing of unfertilized hamster ova. Cryobiology 25:338–354, 1988.
Thirumala, S., M. S. Ferrer, A. Al-Jarrah, B. E. Eilts, D. L. Paccamonti, and R. V. Devireddy. Cryopreservation of canine spermatozoa: Theoretical prediction of optimal cooling rates in the presence and absence of cryoprotective agents. Cryobiology 47:109–124, 2003.
Walcerz, D. B., M. J. Taylor, and A. L. Busza. Determination of the kinetics of permeation of dimethylsulfoxide in isolated corneas. Cell Biophys. 26:79–102, 1995.
Wusteman, M. C., D. E. Pegg, M. P. Robinson, L. H. Wang, and P. Fitch. Vitrification media: Toxicity, permeability and dielectric properties. Cryobiology 44, 24–37, 2002.
Xu, X., Z. F. Cui, and J. P. G. Urban. Measurement of the chondrocyte membrane permeability to Me2SO, glycerol and 1,2-propanediol. Med. Eng. Phys. 25:573–579, 2003.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4