A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://link.springer.com/10.1007/978-3-031-13983-3_5 below:

A Look in to the Neurocranium of Living and Extinct Lepidosauria

  • Albino AM, Caldwell M (2003) Hábitos de vida de la serpiente cretácica Dinilysia patagonica Woodward. Ameghiniana 40:407–414

    Google Scholar 

  • Albino A (2011) Evolution of Squamata reptiles in Patagonia based on the fossil record. Biol J Linn Soc 103:441–457

    Article  Google Scholar 

  • Allemand R (2017) Endocranial microtomographic study of marine reptiles (Plesiosauria and Mosasauroidea) from the Turonian (Late Cretaceous) of Morocco: palaeobiological and behavioral implications. Ph.D. Dissertation, Museum National d’Histoire Naturelle, Paris

    Google Scholar 

  • Allemand RR, Boistel G, Daghfous Z, Blanchet R, Cornette N, Bardet P, Vincent HA (2017) Comparative morphology of snake (Squamata) endocasts: evidence of phylogenetic and ecological signals. J Anat 231:849–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson CL, Kabalka GW, Layne DG et al (2000) Non-invasive high field MRI brain imaging of the garter snake (Tamnhophis sirtalis). Copeia 1:265–269

    Google Scholar 

  • Apesteguía S (2008) Esfenodontes (Reptilia, Lepidosauria) del Cretácico Superior de Patagonia: Anatomía y filogenia. Dissertation, Universidad Nacional de La Plata

    Google Scholar 

  • Apesteguía S, Zaher H (2006) A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature 440:1037–1040

    Article  PubMed  Google Scholar 

  • Armstrong JA, Gamble HJ, Goldby F (1953) Observations on the olfactory apparatus and telencephalon of Anolis, a microsmatic lizard. J Anat 87:288–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auen EL, Langebartel DA (1977) The cranial nerves of the colubrid snakes Elaphe and Thamnophis. J Morphol 154:205–222

    Article  CAS  PubMed  Google Scholar 

  • Bahl KN (1937) Skull of Vanarus monitor. Rec Ind Mus 39:133–174

    Google Scholar 

  • Balanoff AM, Bever GS (2020) The role of endocasts in the study of brain evolution. In: Kaas J (ed) Evolutionary neuroscience. Elsevier, pp 29–49

    Chapter  Google Scholar 

  • Balanoff AM, Bever GS (2017) The role of endocasts in the study of brain evolution. In: Kaas (ed) Evolutionary Neuroscience, Academic Press pp 29–49

    Google Scholar 

  • Balanoff AM, Bever GS, Colbert MW et al (2016) Best practices for digitally constructing endocranial casts: examples from birds and their dinosaurian relatives. J Anat 229:173e190

    Article  Google Scholar 

  • Barbas-Henry HA (1988) The cranial nerves III-XII in the monitor lizard Varanus exanthematicus: a neuroanatomical tracing study. Free University Press, Amsterdam

    Google Scholar 

  • Bardet N, Suberbiola XP, Jalil NE (2003) A new mosasauroid (Squamata) from the Late Cretaceous (Turonian) of Morocco. C R Palevol 2:607–616

    Article  Google Scholar 

  • Bardet N, Suberbiola XP, Iarochene M, Bouya B, Amaghzaz M (2005) A new species of Halisaurus from the Late Cretaceous phosphates of Morocco, and the phylogenetical relationships of the Halisaurinae (Squamata: Mosasauridae). Zool J Linn Soc 143:447–472

    Article  Google Scholar 

  • Bardet N, Falconnet J, Fischer V, Houssaye A, Jouve S, Pereda Suberbiola X, Pérez-García A, Rage JC, Vincent P (2014) Mesozoic marine reptile palaeobiogeography in response to drifting plates. Gondwana Res 26:869–887

    Article  Google Scholar 

  • Bauer AM (1989) Extracranial endolymphatic sacs in Eurydactylodes (Reptilia: Gekkonidae), with comments on endolymphatic function in lizards in general. J Herpetol 23:172–175

    Article  Google Scholar 

  • Bauer AM, Beach-Mehrotra M, Bermudez Y et al (2018) The tiny skull of the Peruvian gecko “Pseudogonatodes barbouri” (Gekkota: Sphaerodactylidae) obtained via a divide-and-conquer approach to morphological data acquisition. S Am J Herpet 13:102–116

    Article  Google Scholar 

  • Bell GL Jr (1997) A phylogenetic revision of North American and adriatic Mosasauroidea. In: Callaway JM, Nicholls EL (eds) Ancient marine reptiles. Academic Press, San Diego, pp 293–332

    Chapter  Google Scholar 

  • Bell GL, Polcyn MJ (2005) Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Neth J Geosci 84(3):177–194

    Google Scholar 

  • Bell CJ, Evans SE, Maisano JA (2003) The skull of the gymnophthalmid lizard Neusticurus ecpleopus (Reptilia: Squamata). Zool J Linn Soc 103:283–304

    Article  Google Scholar 

  • Bellairs AA, Kamal AM (1981) The chondrocranium and the development of the skull in recent reptiles. In: Gans C (ed) Biology of the reptilia. Academic Press, New York

    Google Scholar 

  • Berman DS (1973) Spathorhynchus fossorium, a Middle Eocene amphisbaenian (Reptilia) from Wyoming. Copeia 1973:704–721

    Article  Google Scholar 

  • Berman DS (1976) A new amphisbaenian (Reptilia: Amphisbaenia) from the Oligocene-Miocene John Day Formation, Oregon. J Paleontol 50:165–174

    Google Scholar 

  • Berman DS (1977) Spathorhynchus natronicus, a new species of rhineurid amphisbaenian (Reptilia) from the early Oligocene of Wyoming. J Paleontol 51:986–991

    Google Scholar 

  • Bever GS, Norell MA (2017) A new rhynchocephalian (Reptilia: Lepidosauria) from the Late Jurassic of Solnhofen (Germany) and the origin of the marine Pleurosauridae. R Soc Open Sci 4:170570

    Article  PubMed  PubMed Central  Google Scholar 

  • Bever GS, Bell CJ, Maisano JA (2005) The ossified braincase and cephalic osteoderms of Shinisaurus crocodilurus (Squamata, Shinisauridae). Palaeontol Electron 8(1):1–36

    Google Scholar 

  • Boistel R, Herrel A, Lebrun R, Daghfous G et al (2011) Shake rattle and roll: The bony labyrinth and aerial descent in squamates. Integr Comp Biol 51:957–968

    Article  PubMed  Google Scholar 

  • Bolet A, Delfino M, Fortuny J, Almecija S, Robles JM, Alba DM (2014) An amphisbaenian skull from the European miocene and the evolution of Mediterranean worm lizards. PLoS ONE 9:e98082

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolet A, Stanley EL, Daza JD, Arias JS, Čerňanský A, Vidal-García M, Bevitt JJ, Peretti A, Evans SE (2021) Unusual morphology in the mid-Cretaceous lizard Oculudentavis. Curr Biol 31:3303–3314.e3303

    Article  Google Scholar 

  • Borsuk-Białynicka M (1985) Carolinidae, a new family of xenosaurid-like lizards from the Upper Cretaceous of Mongolia. Acta Palaeontol Pol 30:151–176

    Google Scholar 

  • Borsuk-Bialynicka M (1987) Carusia, a new name for the Later Cretaceous lizard Carolina. Acta Palaeontol Pol 32:153

    Google Scholar 

  • Borsuk-Białynicka M (1990) Gobekko cretacicus gen. et. sp. n., a new gekkonid lizard from the Cretaceous of the Gobi Desert. Acta Palaeontol Pol 35:67–76

    Google Scholar 

  • Brizuela S, Albino A (2017) Redescription of the extinct species Callopistes bicuspidatus Chani, 1976 (Squamata, Teiidae). J Herpetol 51:343–354

    Article  Google Scholar 

  • Broom R (1903) On the skull of a true Lizard (Paliguana whitei) from the Triassic beds of South Africa. Rec AlbanyMus 1:1–3

    Google Scholar 

  • Bruce LL (2006) Evolution of the nervous system in reptiles. In: Kaas JH (ed) Evolution of nervous systems, vol II. The evolution of nervous systems in non-mammalian vertebrates. Elsevier, pp 125–156

    Google Scholar 

  • Bruce L (2009) Evolution of the brain in reptiles. In: Binder, Hiokawa, Windhorst (eds), Encyclopedia ofNeuroscience, Springer, Berlin pp 1295–1301

    Google Scholar 

  • Burbrink FT, Grazziotin FG, Pyron RA et al (2020) Interrogating genomic-scale data for Squamata (Lizards, Snakes, and Amphisbaenians) shows no support for key traditional morphological relationships. Syst Biol 69:502–520

    Article  CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (2005) Comparative vertebrate neuroanatomy: evolution and adaptation, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Butler AB, Northcutt RG (1973) Architectonic studies of the diencephalon of Iguana iguana (Linnaeus). J Comp Neurol 149:439–462

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MW (1999) Squamate phylogeny and the relationships of snakes and mosasauroids. Zool J Linn Soc 125(1):115–147

    Article  Google Scholar 

  • Caldwell MW (2012) A challenge to categories: what, if anything, is a mosasaur? Bull Soc Géol Fr 183:7–34

    Article  Google Scholar 

  • Caldwell MW, Konishi T, Dutchak A, Bell GB Jr, Lamb J (2007) Osteology of the middle ear in mosasaurs (Squamata): from impedance matching to underwater hearing. In: Everhart MJ (ed) Second mosasaur meeting abstract booklet. Fort Hays State University – Sternberg Museum of Natural History, Hays, p 10

    Google Scholar 

  • Caldwell MW, Nydam RL, Palci A, Apesteguía S (2015) The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insight on snake evolution. Nat Commun 6:5996

    Article  CAS  PubMed  Google Scholar 

  • Camaiti M, Evans AR, Hipsley CA, Chapple DG (2021) A farewell to arms and legs: a review of limb reduction in squamates. Biol Rev Camb Philos Soc 96:1035–1050

    Article  PubMed  Google Scholar 

  • Camp CL (1923) Classification of the lizards. Am Mus Nat Hist Bull 48:289–481

    Google Scholar 

  • Camp CL (1942) California mosasaurs. University of California Press, Berkeley

    Google Scholar 

  • Carroll RL, deBraga M (1992) Aigialosaurs: Mid-Cretaceous varanoid lizards. J Vert Paleontol 12(1):66–86

    Article  Google Scholar 

  • Čerňanský A, Stanley EL, Daza JD et al (2022) A new Early Cretaceous lizard in Myanmar amber with exceptionally preserved integument. Res Sq. https://doi.org/10.21203/rs.3.rs-952564/v1

  • Chambi-Trowell SAV, Whiteside DI, Benton MJ (2019) Diversity in rhynchocephalian Clevosaurus skulls based on CT reconstruction of two Late Triassic species from Britain. Acta Paleontol Pol 64

    Google Scholar 

  • Chou CY, Xing LD (2020) Vertebrate remains in amber around the world. Acta Palaeontol Sin 59:30–42

    Google Scholar 

  • Christensen K (1927) The morphology of the brain of Sphenodon. Univ Iowa Stud Nat Hist 12:1–29

    Google Scholar 

  • Conrad JL (2008) Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull Am Mus Nat Hist 310:1–182

    Article  Google Scholar 

  • Conrad JL, Daza JD (2015) Naming and rediagnosing the Cretaceous Gekkonomorph (Reptilia, Squamata) from Oosh (Ovorkhangai, Mongolia). J Vert Paleontol 35

    Google Scholar 

  • Conrad JL, Norell M (2006) High-resolution X-ray computed tomography of an Early Cretaceous gekkonomorph (Squamata) from Öösh (Övorkhangai; Mongolia). Hist Biol 18:405–431

    Article  Google Scholar 

  • Conrad JL, Norell M (2008) The braincase of two glyptosaurines (Anguidae, Squamata) and anguid phylogeny. Am Mus Nov 3613:1–24

    Article  Google Scholar 

  • Conrad JL, Rieppel O, Grande L (2008) Re-assessment of varanid evolution based on new data from Saniwa ensidens Leidy, 1870 (Squamata, Reptilia). Am Mus Nov 3630:1–15

    Article  Google Scholar 

  • Conrad JL, Rieppel O, Gauthier JA, Norell MA (2011) Osteology of Gobiderma pulchrum (Monstersauria, Lepidosauria, Reptilia) Bull Am Mus. Nat Hist 362:1–88

    Google Scholar 

  • Conrad JL, Balcarcel AM, Mehling CM (2012) Earliest Example of a Giant Monitor Lizard (Varanus, Varanidae, Squamata). PLoS ONE 7(8):e41767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruzado-Caballero P, Castillo Ruiz C, Bolet A, Colmenero JR, De la Nuez J, Casillas R, Llacer S, Bernardini F, Fortuny J (2019) First nearly complete skull of Gallotia auaritae (lower-middle Pleistocene, Squamata, Gallotiinae) and a morphological phylogenetic analysis of the genus Gallotia. Sci Rep 9:16629

    Article  PubMed  PubMed Central  Google Scholar 

  • Cundall D, Irish F (2008) The snake skull. In: Gans C, Gaunt AS, Adler K (eds) Biology of the reptilia, Volume 20, Morphology H. Society for the Study of Amphibians and Reptiles, Ithaca, pp 349–692

    Google Scholar 

  • Cuny G, Jaeger JJ, Mahboubi M et al (1990) Les plus anciens serpentes (Reptilia, Squamata) connus. Mise au point sur l’âge géologique des Serpents de la partie moyenne du Crétacé. C R séances Acad Sci Paris Ser 2(311):1267–1272

    Google Scholar 

  • Cuthbertson RS, Maddin HC, Holmes RB, Anderson JS (2015) The braincase and endosseous labyrinth of Plioplatecarpus peckensis (Mosasauridae, Plioplatecarpinae), with functional implications for locomotor behavior. Anat Rec 298:1597–1611

    Article  Google Scholar 

  • deBraga M, Carroll RL (1993) The origin of mosasaurs as a model of macroevolutionary patterns and processes. Evol Biol 27:245–322

    Google Scholar 

  • Dakrory AI (2011a) Innervation of the Olfactory Apparatus of Varanus Niloticus (Squamata– Lacertilia-Varanidae). J Am Sci 7(9)

    Google Scholar 

  • Dakrory AI (2011b) Anatomical study on the cranial nerves of the spiny tail lizard Uromastyx aegypticus (Squamata, Lacertilia, Agamidae) II-nervous facialis. J Egypt Ge Soc Zool 63B:99–129

    Google Scholar 

  • Daza JD, Bauer AM (2015) Cranial anatomy of the pygopodid lizard Aprasia repens, a gekkotan masquerading as a scolecophidian. In: Bininda-Emonds ORP, Powell GL, Jamniczky HA, Bauer AM, Theodor JM (eds) All animals are interesting: a festschrift in honour of Anthony P. Russell. BIS Verlag, Oldenburg, pp 303–350

    Google Scholar 

  • Daza JD, Abdala V, Thomas R, Bauer AM (2008) Skull anatomy of the miniaturized gecko Sphaerodactylus roosevelti (Squamata: Gekkota). J Morphol 239:1340–1364

    Google Scholar 

  • Daza JD, Bauer AM, Snively E (2013) Gobekko cretacicus (Reptilia: Squamata) and its bearing on the interpretation of gekkotan affinities. Zool J Linn Soc 167:430–448

    Article  Google Scholar 

  • Daza JD, Mapps AA, Lewis PJ, Thies ML, Bauer AM (2015) Peramorphic traits in the tokay gecko skull. J Morphol 276:915–928

    Article  PubMed  Google Scholar 

  • Daza JD, Stanley EL, Wagner P, Bauer AM, Grimaldi DA (2016) Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Sci Adv 2

    Google Scholar 

  • Dendy A (1909) The intracranial vascular system of sphenodon. Proc R Soc B 81:403–427

    Google Scholar 

  • Dendy A (1910) On the structure, development and morphological interpretation of the pineal organs and adjacent parts of the brain in the tuatara (Sphenodon punctatus). Philos Trans R Soc Lond B 201:226e331

    Google Scholar 

  • Diaz RE, Trainor PA (2019) An integrative view of lepidosaur cranial anatomy, development, and diversification. In: Ziermann J, Diaz R Jr, Diogo R (eds) Heads, jaws, and muscles. Fascinating life sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-93560-7_9

    Chapter  Google Scholar 

  • Estes R (1983) Handbuch der Paläherpetologie, Sauria terrestria, Amphisbaenia. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Estes R, Frazzetta TH, Williams EE (1970) Studies on the fossil snake Dinilysia patagonica Woodward: part I. Cranial morphology. Bull Mus Comp Zool 140:25–74

    Google Scholar 

  • Estes R, de Queiroz K, Gauthier J (1988) Phylogenetic relationships within Squamata. In: Estes R, Pregill G (eds) Phylogenetic relationships of the lizard families. Essays commemorating Charles L. Camp. Stanford University Press, California, pp 119–281

    Google Scholar 

  • Evans SE (1980) The skull of a new eosuchian reptile from the Lower Jurassic of South Wales. Zool J Linn Soc 70:203–264

    Article  Google Scholar 

  • Evans S (1984) The classification of the Lepidosauria. Zool J Linn Soc 82:87–100

    Article  Google Scholar 

  • Evans SE (1987) The braincase of Youngina capensis (Reptilia: Diapsida; Permian). N Jb Geol Paläont Mh 4:293–203

    Google Scholar 

  • Evans SE (1991) A new lizard-like reptile (Diapsida: Lepidosauromorpha) from the Middle Jurassic of England. Zool J Linn Soc 103:391–412

    Google Scholar 

  • Evans SE (1998) Crown-group lizards (Reptilia, Squamata) from the Middle Jurassic of the British Isles.Palaeontographica Ab 250(4):123–154

    Google Scholar 

  • Evans SE (2008) The skull of lizards and tuatara. In: Gans C, Gaunt S, Adler K (eds) Biology of the reptilia, Volume 20, Morphology H. Society for the Study of Amphibians and Reptiles, Ithaca, pp 1–347

    Google Scholar 

  • Evans SE (2016) The lepidosaurian ear: variations on a theme. In: Clack J, Fay R, Popper A (eds) Evolution of the vertebrate ear. Springer handbook of auditory research. Springer Nature, Cham, pp 245–284

    Google Scholar 

  • Evans SE (2022) The origin and early diversification of squamates. In: Gower, Zaher (eds), The origins and earlyevolutionary history of snakes, Cambridge University Press, pp 7–25

    Google Scholar 

  • Evans SE, Chure DC (1998) Paramacellodid lizard skulls from the Jurassic Morrison Formation at Dinosaur National Monument, Utah. J Vert Paleontol 18:99–114

    Article  Google Scholar 

  • Evans SE, Jones MEH (2010) The origin, early history and diversification of lepidosauromorph reptiles. In: Bandyopadhyay S (ed) New aspects of Mesozoic biodiversity, lecture notes in earth sciences. Springer, Berlin, pp 27–44

    Chapter  Google Scholar 

  • Ford DP, Evans SE, Choiniere JN, Fernandez V, Benson RBJ (2021) A reassessment of the enigmatic diapsid Paliguana whitei and the early history of Lepidosauromorpha. Proc Biol Sci 288:20211084

    PubMed  PubMed Central  Google Scholar 

  • Fraser NC (1982) A new rhynchocephalian from the British Upper Trias. Palaeontology 25:709–725

    Google Scholar 

  • Gamble T, Greenbaum E, Russell AP, Jackman TR, Bauer AM (2012) Repeated origin and loss of toepads in gekkotan lizards. PLoS ONE 7:e39429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gans C, Wever EG (1976) The ear and hearing in Sphenodon punctatus. PNAS 73 (11):4244–4246

    Google Scholar 

  • Gans C, Northcutt RG, Ulinski P (eds) (1979a) Biology of the reptilia, Volume 9, Neurology A. Academic Press, London

    Google Scholar 

  • Gans C, Northcutt RG, Ulinski P (eds) (1979b) Biology of the reptilia, Volume 10. Neurology B. Academic Press, London

    Google Scholar 

  • Gans C, Northcutt RG, Ulinski P (eds) (1992) Biology of the reptilia, Volume 17. Neurology C. Sensorimotor integration. Academic Press, London

    Google Scholar 

  • Gao K, Norell M (1998) Taxonomic revision of Carusia (Reptilia: Squamata) from the Late Cretaceous of the Gobi Desert and phylogenetic relationships of the anguimorphan lizards. Am Mus Nov 3230:1–51

    Google Scholar 

  • Gao K, Norell MA (2000) Taxonomic composition and systematics of late cretaceous lizard assemblages from Ukhaa Tolgod and adjacent localities Mongolian Gobi Desert. Bull Am Mus Nat Hist 249:4–52

    Google Scholar 

  • García S (2021) Morfología neurocraneana del Teiidae (Squamata/Lacertilia) Callopistes cf. rionegrensis de laFormación Chichinales (Mioceno temprano), Provincia de Río Negro, Argentina. Undergraduate thesis, UniversidadNacional de Rio Negro

    Google Scholar 

  • García S, Paulina-Carabajal A, Cruzado-Caballero P (2021) Reconstrucción del oído interno de la lagartija extintaCallopistes cf. rionegrensis. PE-APA 21(R2):R21. https://doi.org/10.5710/PEAPA.08.06.2021.394

  • Garberoglio FF, Apesteguía S, Simões T, Palci A, Gómez R, Nydam R, Larsson H, Lee M, Caldwell M (2019) New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Sci Adv 5:eaax5833

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner BG (1982) Tetrapod classification. Zool J Linn Soc 74:207–232

    Article  Google Scholar 

  • Gardner NM, Holliday CM, O’Keefe FR (2010) The baincase of Youngina capensis (Reptilia, Dipsida): new insights from high-resolution CT scanning of the holotype. Palaentol Electron 13(19A):16

    Google Scholar 

  • Gauthier J, Estes R, Queiroz K (1988) A phylogenetic analysis of lepidosauromorpha. In: Estes, Despard, Gregory (eds), Phylogenetic Relationships of the Lizard Families: Essays Commemorating Charles L.Camp, StanfordUniversity Press, pp 15–98

    Google Scholar 

  • Gauthier J, Kearney M, Maisano JA et al (2012) Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record. Bull Peabody Mus Nat Hist 53:3–308

    Article  Google Scholar 

  • Georgalis GL, Rabi M, Smith KT (2021) Taxonomic revision of the snakes of the genera Palaeopython and Paleryx (Serpentes, Constrictores) from the Paleogene of Europe. Swiss J Palaeontol 140:18

    Article  Google Scholar 

  • Georgi JA (2008) Semicircular canal morphology as evidence of locomotor environment in amniotes. PhD Thesis. New York: Stony Brook University

    Google Scholar 

  • Georgi JA, Sipla JS (2008) Comparative and functional anatomy of balance in aquatic reptiles and birds. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 233–256

    Google Scholar 

  • Gilmore CW (1943) Fossil lizards of Mongolia. Bull Amer Mus Nat Hist 81:361–384

    Google Scholar 

  • Gisi J (1808) Das Gehirn von Hatteria punctata. Zool Jhb Abt F Anat Ontog 25:71–236

    Google Scholar 

  • Goldby F (1934) The cerebral hemispheres of Lacerta viridis. J Anat 68:157–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldby F, Gamble HJ (1957) The reptilian cerebral hemispheres. Biol Rev 32(4):383–420

    Google Scholar 

  • Gower DJ, Weber E (1998) The braincase of Euparkeria, and the evolutionary relationships of birds andcrocodilians. Biol Rev 73(4):367–411

    Google Scholar 

  • Greenberg N, MacLean PD (1978) Behavior and neurology of lizards, an interdisciplinary colloquium. U.S. Department of health, education, and welfare publication No. (ADM) pp 77–491

    Google Scholar 

  • Greene HW (1997) Snakes. The evolution of mystery in nature. University of California Press, Berkeley

    Google Scholar 

  • Greer AE (1985) The relationships of the lizard genera Anelytropsis and Dibamus. J Herpetol 19:116–156

    Google Scholar 

  • Griffing AH, Sanger TJ, Daza JD et al (2019) Embryonic development of a parthenogenetic vertebrate, the mourning gecko (Lepidodactylus lugubris). Dev Dyn 248:1070–1090

    Article  CAS  PubMed  Google Scholar 

  • Griffiths E, Ford DE, Benson RB Evans SE (2021) New information on the Jurassic lepidosauromorph Marmorettaoxoniensis. Pap Palaeontol 7(4):2255–2278

    Google Scholar 

  • Grigoriev DV, Averianov AO, Arkhangelsky MS et al (2009) A mosasaur from the Cenomanian of Russia. Paleontol J 43(3):311e317

    Google Scholar 

  • Guerra C, Montero R (2009) The skull of Vanzosaura rubricauda (Squamata: Gymnophthalmidae). Acta Zool (Stockholm) 90:359–371

    Article  Google Scholar 

  • Güntürkün O, Stacho M, Strökens F (2017) The brains of reptiles and birds. In: Kaas JH (ed) Evolution of nervous systems, 2nd edn. Elsevier, New York, pp 171–221

    Chapter  Google Scholar 

  • Güntürkün O, Stacho M, Strökens F (2020) The brains of reptiles and birds. In: Kaas JH (ed) Evolutionary neuroscience. Wiley, New York, pp 159–212

    Chapter  Google Scholar 

  • Haas G (1964) Anatomical observations on the head of Liotyphlops albirostris (Typhlopidae, Ophidia). Acta Zool 45:1–62

    Article  Google Scholar 

  • Haas G (1979) On a new snakelike reptile from the lower Cenomanian of ‘Ein Yabrud, near Jerusalem. Bull Mus Natl Hist Nat Paris 4:51–64

    Google Scholar 

  • Haas G (1980a) Remarks on a new ophiomorph reptile from the Lower Cenomanian of Ein Jabrud, Israel. In: Jacobs LL (ed) Aspects of vertebrate history, in Honor of E. H. Colbert. Museum of Northern Arizona Press, Flagstaff, pp 177–192

    Google Scholar 

  • Haas G (1980b) Pachyrhachis problematicus Haas, snakelike Reptile from the lower Cenomanian: ventral view of the skull. Bull Mus Natl Hist Nat Paris 4:87–104

    Google Scholar 

  • Hay JM, Subramanian S, Millar CD et al (2008) Rapid molecular evolution in a living fossil. Trends Genet 24:106–109

    Article  CAS  PubMed  Google Scholar 

  • Hernández Morales C, Peloso PLV, Bolívar García W et al (2018) Skull morphology of the lizard Ptychoglossus vallensis (Squamata: Alopoglossidae) with comments on the variation within Gymnophthalmoidea. Anat Rec 302:1074–1092

    Article  Google Scholar 

  • Herrera-Flores J, Elsler A, Stubs T et al (2021) Slow and fast evolutionary rates in the history of lepidosaurs. Palaentology. https://doi.org/10.1111/pala.12579

  • Hoffstetter R, Rage J-C (1977) Le gisement de vertébrés miocènes de La Venta (Colombie) et sa faune de serpents. Ann Paléontol 63:161–190

    Google Scholar 

  • Holovacs NT, Daza JD, Guerra C et al (2019) You can’t run, but you can hide: the skeleton of the sand-swimmer lizard Calyptommatus leiolepis (Squamata: Gymnophthalmidae). Anat Rec 303:1305–1326

    Article  Google Scholar 

  • Hoops D, Desfilis E, Ullmann JFP et al (2018) A 3D MRI-based atlas of a lizard brain. J Comp Neurol 526:2511–2547

    Article  PubMed  Google Scholar 

  • Hoops D, Weng H, Shaid A et al (2021) A fully segmented 3D anatomical atlas of a lizard brain. Brain Struct Funct 226:1727–1741

    Article  PubMed  Google Scholar 

  • Hopson JA (1979) Paleoneurology. In: Gans C (ed) Biology of the reptilia, vol 9. Academic Press, New York, pp 39–146

    Google Scholar 

  • Houssaye A, Bardet N (2013) A baby mosasauroid (Reptilia, Squamata) from the Turonian of Morocco – Tethysaurus ‘junior’ discovered? Cret Res 46:208–215

    Article  Google Scholar 

  • Hsiou AS (2007) A new Teiidae species (Squamata, Scincomorpha) from the Late Pleistocene of Rio Grande do Sul State, Brazil. Rev Bras Paleontol 10:181–194

    Article  Google Scholar 

  • Hurlburt GR, Ridgely RC, Witmer LM (2013) Relative size of brain and cerebrum in tyrannosaurid dinosaurs: ananalysis using brain-endocast quantitative relationships in extant allligators. In: Parrish, Molnar, Currie, Koppelhus (eds), Tyrannosaurid paleobiology, Indiana University Press, pp 135–154

    Google Scholar 

  • Islam A, Ashiq S (1972) The cranial nerves of Uromastix hardwicki Gray. Biologia 18:51–73

    Google Scholar 

  • Janensch W (1906) Über Archaeophis proavus Mass., eine Schlange aus dem Eocän des Monte Bolca. In: Neumayr M (ed) Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, vol 19. Hansebooks, pp 1–33

    Google Scholar 

  • Jerison HJ (1973) Evolution of the Brain and Intelligence. New York, Academic Press

    Google Scholar 

  • Jiménez-Huidobro P (2016) Phylogenetic and palaeobiogeographical analysis of Tylosaurinae (Squamata: Mosasauroidea). Dissertation, University of Alberta

    Google Scholar 

  • Jiménez-Huidobro P, Caldwell MW (2016) Reassessment and reassignment of the Early Maastrichtian mosasaur Hainosaurus bernardi Dollo, 1885, to Tylosaurus Marsh, 1872. J Vert Paleontol 36(3):e1096275–e1096212

    Article  Google Scholar 

  • Jiménez-Huidobro P, Simões TR, Caldwell MW (2017) Mosasauroids from Gondwanan Continents. J Herpetol 51:355–364

    Article  Google Scholar 

  • Jollie MT (1960) The head skeleton of the lizard. Acta Zool (Stockholm) 41:1–54

    Article  Google Scholar 

  • Jones MEH (2008) Skull shape and feeding strategy in Sphenodon and other Rhynchocephalia (Diapsida: Lepidosauria). J Morphol 269:945–966

    Article  PubMed  Google Scholar 

  • Jones MEH, Curtis N, Fagan MJ et al (2011) Hard tissue anatomy of the cranial joints in Sphenodon (Rhynchocephalia): sutures, kinesis, and skull mechanics. Paleontol Electron 14(2):17A-1-17A-92

    Google Scholar 

  • Jones ME, Anderson CL, Hipsley CA et al (2013) Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol Biol 13:208

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamal AM (1971) On the fissura metotica in Squamata. Bull Zool Soc Egypt 23:53–57

    Google Scholar 

  • Kearney M (2003) Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herpetol Monogr 17(1):1–74

    Article  Google Scholar 

  • Kearney M, Maisano JA, Rowe T (2005) Cranial anatomy of the extinct amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high-resolution X-ray computed tomography. J Morphol 264:1–33

    Article  PubMed  Google Scholar 

  • Kim R, Evans D (2014) Relationships among brain, endocranial cavity, and body sizes in reptiles. Society of Vertebrate Paleontology 74th Annual Meeting, Berlin, Germany.

    Google Scholar 

  • Klembara J, Böhme M, Rummel M (2010) Revision of the anguine lizard Pseudopus laurillardi (Squamata, Anguidae) from the Miocene of Europe, with comments on paleoecology. J Paleontol 84:159–196

    Article  Google Scholar 

  • Kluge AG (1962) Comparative osteology of the eublepharid genus Coleonyx Gray. J Morphol 110:299–332

    Article  Google Scholar 

  • Kluge AG (1967) Higher taxonomic categories of gekkonid lizards and their evolution. Bull Am Mus Nat Hist 135:1–60

    Google Scholar 

  • Kluge AG (1976) Phylogenetic relationships in the lizard family Pygopodidae: an evaluation of theory, methods and data. Misc Publ Mus Zool Univ Mich 152:1–72

    Google Scholar 

  • Konishi T, Caldwell MW (2011) Two new plioplatecarpine (Squamata, Mosasauridae) genera from the Upper Cretaceous of North America, and a global phylogenetic analysis of plioplatecarpines. J Vert Paleontol 31:754–783

    Article  Google Scholar 

  • Konishi T, Caldwell MW, Nishimura T et al (2015) A new halisaurine mosasaur (Squamata: Halisaurinae) from Japan: the first record in the western Pacific realm and the first documented insights into binocular vision in mosasaurs. J Syst Palaeontol. https://doi.org/10.1080/14772019.2015.1113447

  • Laver RJ, Morales CH, Heinicke MP et al (2020) The development of cephalic armor in the tokay gecko (Squamata: Gekkonidae: Gekko gecko). J Morphol 281:213–228

    Article  PubMed  Google Scholar 

  • Liem KF, Bemis WE, Walker WF, et al (2000) Functional anatomy of the vertebrates: an evolutionary perspective. 3rd ed. Thomson Learning, Belmont

    Google Scholar 

  • Longrich NR, Bhullar B-A S, Gauthier JA (2012) Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary. Proc Natl Acad Sci 109:21396–21396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macri S, Savriama Y, Khan I et al (2019) Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Comm 10:5560. https://doi.org/10.1038/s41467-019-13405-w

    Article  CAS  Google Scholar 

  • Maisano JA, Kearney M, Rowe T (2005) Cranial anatomy of the spade-headed amphisbaenian Diplometopon zarudnyi (Squamata, Amphisbaenia) based on high-resolution x-ray computed tomography. J Morphol 267(1):70–102

    Article  Google Scholar 

  • Makádi L, Caldwell MW, Ősi A (2012) The first freshwater mosasauroid (Upper Cretaceous, Hungary) and a new clade of basal mosasauroids. PLoS One 7(12):e51781

    Article  PubMed  PubMed Central  Google Scholar 

  • Martill DM, Tischlinger H, Longrich NR (2015) A four legged snake from the Early Cretaceous of Gondwana. Nature 349:416–419

    CAS  Google Scholar 

  • Martínez RN, Simões TR, Sobral G et al (2021) A Triassic stem lepidosaur illuminates the origin of lizard-like reptiles. Nature 597:235–238

    Article  PubMed  Google Scholar 

  • McDowell SB (2008) The skull of serpentes. In: Gans C, Gaunt AS, Adler K (eds) Biology of the reptilia, Volume 21, Morphology I. Society for the Study of Amphibians and Reptiles, Ithaca, pp 467–620

    Google Scholar 

  • McDowell SB, Bogert CM (1954) The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bull Am Mus Nat Hist 105:1–42

    Google Scholar 

  • Meloro C, Jones ME (2012) Tooth and cranial disparity in the fossil relatives of Sphenodon (Rhynchocephalia) dispute the persistent ‘living fossil’ label. J Evol Biol 25:2194–2209

    Article  PubMed  Google Scholar 

  • Montero R, Gans C (1999) The head skeleton of Amphisbaena alba Linneaus. Ann Carnegie Mus 68:15–80

    Article  Google Scholar 

  • Montero R, Gans C (2008) An atlas of amphisbaenian skull anatomy. In: Gans C, Gaunt AS, Adler K (eds) Biology of the reptilia, Vol 21, Morphology I (The Skull and appendicular locomotor apparatus of Lepidosauria). Society for the Study of Amphibians and Reptiles, Ithaca, pp 621–738

    Google Scholar 

  • Montero R, Gans C, Lions ML (1999) Embryonic development of the skeleton of Amphisbaena darwiniheterozonata (Squamata: Amphisbaenidae) J Morphol 239:1–25

    Google Scholar 

  • Montero R, Abdala V, Moro S et al (2004) Atlas de Tupinambis rufescens (Squamata: Teiidae). Anatomía externa, osteología y bibliografía. Cuad Herpetol 18:17–32

    Google Scholar 

  • Montero R, Daza JD, Bauer AM et al (2017) How common are cranial sesamoids among squamates? J Morphol 278:1400–1411

    Article  PubMed  Google Scholar 

  • Motani R (2009) The evolution of marine reptiles. Evol: Educ Outreach 2:224–235

    Google Scholar 

  • Müller J, Hipsley CA, Head JJ et al (2011) Eocene lizard from Germany reveals amphisbaenian origins. Nature 473:364–367

    Article  PubMed  Google Scholar 

  • Müller J, Hipsley CA, Maisano JA (2016) Skull osteology of the Eocene amphisbaenian Spathorhynchus fossorium (Reptilia, Squamata) suggests convergent evolution and reversals of fossorial adaptations in worm lizards. J Anat 229:615–630

    Google Scholar 

  • Nieuwenhuys R (1998) Morphogenesis and general structure. In: Nieuwenhuys R, Ten Donkelaar HJ, Nicholson C (eds) The central nervous system of vertebrates. Springer, Berlin, pp 158–228

    Chapter  Google Scholar 

  • Northcutt RG (1978) Forebrain and midbrain organization in lizards and its phylogenetic significance. In: Greenberg N, MacLean MPD (eds) Behaviour and neurology of lizards. National Institute of Mental Health, Rockville, pp 11–64

    Google Scholar 

  • Northcutt RG (2002) Understanding vertebrate brain evolution. Integ Comp Biol 42:743–756

    Article  Google Scholar 

  • Northcutt RG (2013) Variation in reptilian brains and cognition. Brain Behav Evol 82:45–54

    Article  PubMed  Google Scholar 

  • O’Donoghue CH (1920) The blood vascular system of the Tuatara, Sphenodon punctatus. Philos Trans R Soc London B 2010:175–125

    Google Scholar 

  • Oelrich TM (1956) The anatomy of the head of Ctenosaura pectinata (Iguanidae). Misc Publ Mus Zool Univ Mich 94:1–122

    Google Scholar 

  • Olori JC (2010) Digital endocasts of the cranial cavity and osseus labyrinth of the burrowing snake Uropeltis woodmansoni (Alethinophidia: Uropeltidae). Copeia 2010:14–26

    Article  Google Scholar 

  • Olori JC, Bell CJ (2012) Comparative skull morphology of uropeltid snakes (Alethinophidia: Uropeltidae) with special reference to disarticulated elements and variation. PLoS ONE 7

    Google Scholar 

  • Palci A, Caldwell MW, Papazzoni CA (2013) A new genus and subfamily of mosasaurs from the Upper Cretaceous of Northern Italy. J Vert Paleontol 33(3):599–612

    Article  Google Scholar 

  • Palci A, Hutchinso MN, Caldwell MW et al (2017) The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes. R Soc Open Sci 4:170685

    Article  PubMed  PubMed Central  Google Scholar 

  • Palci A, Hutchinson MN, Caldwell MW et al (2018) Paleoecological inferences for the fossil Australian snakes Yurlunggur and Wonambi (Serpentes, Madtsoiidae). R Soc Open Sci 5(3):172012

    Article  PubMed  PubMed Central  Google Scholar 

  • Paluh DJ, Bauer AM (2017) Comparative skull anatomy of terrestrial and crevice-dwelling Trachylepis skinks (Squamata: Scincidae) with a survey of resources in scincid cranial osteology. PLoS ONE 12:e0184414

    Article  PubMed  PubMed Central  Google Scholar 

  • Panciroli E, Benson RBJ, Walsh SL et al (2020) Diverse vertebrate assemblage of the Kilmaluag Formation (Bathonian, Middle Jurassic) of Skye, Scotland. Earth Environ Sci Trans R Soc Edinb 111:135–156

    CAS  Google Scholar 

  • Páramo-Fonseca ME (2000) Yaguarasaurus columbianus (Reptilia, Mosasauridae), a primitive mosasaur from the Turonian (Upper Cretaceous) of Columbia. Historical Biology 14:121–131

    Article  Google Scholar 

  • Páramo-Fonseca ME (2013) Eonatator coellensis nov. sp. (Squamata: Mosasauridae), a new species from the Upper Cretaceous of Colombia. Revista Acad Colomb Ci Exact 37:499–518

    Google Scholar 

  • Perez-Martinez C, Leal M (2021) Lizards as models to explore the ecological and neuroanatomical correlates of miniaturization. Behaviour 158:1121–1168

    Article  Google Scholar 

  • Peterson EA (1966) Hearing in the lizard: some comments on the auditory capacities of a nonmammalian ear. Herpteologica 22:161–171

    Google Scholar 

  • Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, Berkeley

    Google Scholar 

  • Platel R (1975) Nouvelles données sur l’encéphalisation des reptiles squamates. Z Zool Syst Evol 13:161–184

    Google Scholar 

  • Platel R (1976) Comparative volumetric analysis of the main subdivisions of the brain in saurian reptiles. J Hirnoforsch 17(6):513–537

    CAS  Google Scholar 

  • Platel R (1989) Anatomy of the brain of the New Zealand Gray Sphenodon punctatus (Sphenodontidae): a quantitative study of the principle subidivions of the brain. J Hirnoforsch 30:325–337

    CAS  Google Scholar 

  • Polcyn MJ (2008) Braincase evolution in plioplatecarpine mosasaurs. J Vert Pal 28(Suppl.3):128A

    Google Scholar 

  • Polcyn MJ (2010) Sensory adaptations in mosasaurs. J Vert Paleontol 30(Suppl 3):146A

    Google Scholar 

  • Polcyn MJ, Bell GL Jr (2005) Russellosaurus coheni n. gen., n. sp., a 92 million- year-old mosasaur from Texas (U.S.A.), and the definition of the parafamily Russellosaurina. Neth J Geosci 84:321–333

    Google Scholar 

  • Polcyn MJ, Jacobs LL et al (2014) Physical drivers of mosasaur evolution. Palaeogeogr Palaeoclimatol Palaeoecol 400:17–27

    Article  Google Scholar 

  • Porter WR, Witmer LM (2015) Vascular patterns in Iguanas and other squamates: blood vessels and sites of thermal exchange. PLoS One 10:e0139215

    Article  PubMed  PubMed Central  Google Scholar 

  • Pough FH, Andrews RM, Crump ML et al (2016) Herpetology, 4th ed,Sinauer Associates, Massachusetts

    Google Scholar 

  • Pratt CW (1948) The morphology of the ethmoidal region of Sphenodon and lizards. Proc Zool Soc Lon 118:171–201

    Article  Google Scholar 

  • Pyron RA (2017) Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst Biol 66:38–56

    PubMed  Google Scholar 

  • Quadros AB, Chafrat P, Zaher H (2018) A new teiid lizard of the genus Callopistes Gravenhorst, 1838 (Squamata, Teiidae), from the Lower Miocene of Argentina. J Vert Paleontol 38:e1484754

    Article  Google Scholar 

  • Rage J-C (1976) Les squamates du Miocène de Beni Mellal, Maroc. Géol Méditerranéenne 3:57–70

    Article  Google Scholar 

  • Rage J-C, Escuillié F (2000) Un nouveau serpent bipède du Cénomanien (Crétacé). Implications phylétiques. C R Acad Sci Paris 330:513–520

    Google Scholar 

  • Range JC, Bailon S (2005) Amphibians and squamate reptiles from the late early Miocene (MN 4) of Béon 1(Montréal-du-Gers, southwestern France). Geodiversitas 27:413–441

    Google Scholar 

  • Reeder TW, Townsend TM, Mulcahy DG et al (2015) Integrated analyses resolve conflicts over squamate eeptile phylogeny and reveal unexpected placements for fossil taxa. PLoS ONE:10

    Google Scholar 

  • Renesto S, Bernardi M (2014) Redescription and phylogeneticrelationships of Megachirella wachtleri Renesto et Posenato, 2003 (Reptilia, Diapsida). Paläontol Zeitsch 88:197–210

    Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere, vol 1. Samson and Wallin, Stockholm

    Google Scholar 

  • Reynoso V-H (1998) Huehuecuetzpalli mixtecus gen. et sp. nov: a basal squamate (Reptilia) from the Early Cretaceous of Texepi de Rodríguez, Central Mexico. Phil Trans R Soc Lon B 353:477–500

    Article  PubMed Central  Google Scholar 

  • Rieppel O (1979a) The braincase of Typhlops and Leptotyphlops (Reptilia: Serpentes). Zool J Linn Soc 65:161–176

    Article  Google Scholar 

  • Rieppel O (1979b) The evolution of the basicranium in the Henophidia (Reptilia: Serpentes). Zool J Linn Soc 66:411–431

    Article  Google Scholar 

  • Rieppel O (1980) The phylogeny of anguinomorph lizards. Naturforschenden Gesellshaft, Basel

    Book  Google Scholar 

  • Rieppel O (1981) The skull and jaw adductor musculature in some burrowing scincomorph lizards of the genera Acontias, Typhlosaurus and Feylinia. J Zool 195:493–528

    Article  Google Scholar 

  • Rieppel O (1984a) The cranial morphology of the fossorial lizard genus Dibamus with a consideration of its phylogenetic relationships. J Zool 204:289–327

    Article  Google Scholar 

  • Rieppel O (1984b) The structure of the skull and jaw adductor musculature of the Gekkota, with comments on the phylogenetic relationships of the Xantusiidae (Reptilia: Lacertilia). Zool J Linn Soc 82:291–318

    Article  Google Scholar 

  • Rieppel O (1993) Patterns of diversity in the reptilian skull. In: Hanken J, Hall BK (eds) The skull. The University of Chicago Press, Chicago, pp 344–390

    Google Scholar 

  • Rieppel O, Head JJ (2004) New specimens of the fossil snake genus Eupodophis Rage & Escuillié, from Cenomanian (Late Cretaceous) of Lebanon. Mem Soc Sci Nat Mus Civ Stor Nat Milano 32:1–26

    Google Scholar 

  • Rieppel O, Zaher H (2000) The braincase of mosasaurs and Varanus, and the relationships of snakes. Zool J Linn Soc 129:489–514

    Article  Google Scholar 

  • Rieppel O, Kluge AG, Zaher H (2002) Testing the phylogenetic relationships of the Pleistocene snake Wonambi naracoortensis Smith. J Vert Paleontol 22:812–829

    Article  Google Scholar 

  • Rieppel O, Kley NJ, Maisano JA (2009) Morphology of the skull of the white-nosed blindsnake, Liotyphlops albirostris (Scolecophidia: Anomalepididae). J Morphol 270:536–557

    Article  PubMed  Google Scholar 

  • Romer AS (1956) Osteology of the Reptiles. Chicago, University of Chicago Press

    Google Scholar 

  • Roscito JG, Rodrigues MT (2010) Comparative cranial osteology of fossorial lizards from the tribe Gymnophthalmini (Squamata, Gymnophthalmidae). J Morphol 271:1352–1365

    Article  PubMed  Google Scholar 

  • Ross CF, Sues H-D, Klerk WJ (1999) Lepidosaurian remains from the Lower Cretaceous Kirkwood Formation of South Africa. J Vert Paleontol 19:21–27

    Article  Google Scholar 

  • Russell DA (1967) Systematics and morphology of American mosasaurs. Bull Peabody Mus Nat Hist 23:1–241

    Google Scholar 

  • Sánchez-Martínez PM, Daza JD, Hoyos JM (2021) Comparative anatomy of the middle ear in some lizard species with comments on the evolutionary changes within Squamata. Peer J 9

    Google Scholar 

  • Säve-Söderbergh G (1947) Notes on the brain-case in Sphenodon and certain Lacertilia. Zool Bidr Uppsala 25:489–516

    Google Scholar 

  • Scanferla A, Smith KT (2020a) Additional anatomical information on the Eocene minute boas Messelophis variatus and Rieppelophis ermannorum (Messel Formation, Germany). Vertebr Zool 70:615–620

    Google Scholar 

  • Scanferla A, Smith KT (2020b) Exquisitely preserved fossil snakes of Messel: insight into the evolution, biogeography, habitat preferences and sensory ecology of Early boas. Diversity 12:100. https://doi.org/10.3390/d12030100

    Article  Google Scholar 

  • Scanferla A, Zaher H, Novas F, de Muizon C, Céspedes R (2013) A new snake skull from the Paleocene of Bolivia sheds light on the evolution of macrostomatans. Plos One 8:e57583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scanferla A, Smith KT, Schaal SFK (2016) Revision of the cranial anatomy and phylogenetic relationships of the Eocene minute boas Messelophis variatus and Messelophis ermannorum (Serpentes, Booidea). Zool J Linn Soc 176:182–206

    Article  Google Scholar 

  • Scanlon JD (2003) The basicranial morphology of madtsoiid snakes (Squamata, Ophidia) and the earliest Alethinophidia (Serptentes). J Vert Paleontol 23:971–976

    Article  Google Scholar 

  • Scanlon JD (2005) Cranial morphology of the Plio-Pleistocene giant madtsoiid snake Wonambi naracoortensis. Acta Palaeontol Pol 50:139–180

    Google Scholar 

  • Scanlon JD (2006) Skull of the large non-macrostomatan snake Yurlunggur from the Australian Oligo-Miocene. Nature 439:839–842

    Article  CAS  PubMed  Google Scholar 

  • Scanlon JD, Lee MSY (2000) The Pleistocene serpent Wonambi and the early evolution of snakes. Nature 403

    Google Scholar 

  • Schmidt RS (1964) Phylogenetic significance of lizard cochlea. Copeia 3:542–549

    Article  Google Scholar 

  • Schoch RR, Sues H-D (2018) A new lepidosauromorph reptile from the Middle Triassic (Ladinian) of Germany andits phylogenetic relationships. J Vertebr Paleontol 38:e1444619

    Google Scholar 

  • Schwenk K (2000) Feeding in lepidosaurs. In: Schwenk (ed), Feeding. California, Academic Press, pp 175–291

    Google Scholar 

  • Segall M, Cornette R, Rasmussen AR et al (2021) Inside the head of snakes: influence of size, phylogeny, andsensory ecology on endocranium morphology. Brain Struct Func 226:2401–2415

    Google Scholar 

  • Shanklin WM (1930) The central nervous system of Chameleo vulgaris. Acta Zool (Stockholm) 11:425–490

    Article  Google Scholar 

  • Shute CCD, Bellairs AA (1953) The cochlear apparatus of Geckonidae and Pygopodidae and its bearing on the affinities of these groups of lizards. Proc Zool Soc Lon 123:695–708

    Article  Google Scholar 

  • Sienbenrock F (1893) Das Skelet von Uroplates fimbriatus Schneid. Ann K K Naturhist Hoormus ien 8:517–536

    Google Scholar 

  • Simões TR, Pyron RA (2021) The squamate tree of life. Bull Mus Comp Zool 163:1–95

    Article  Google Scholar 

  • Simões TR, Caldwell MW, Talanda M et al (2018) The origin of squamates revealed by a Middle Triassic lizard from the Italian Alps. Nature 557:706–709

    Article  PubMed  Google Scholar 

  • Simões TR, Vernygora O, Caldwell MW et al (2020) Megaevolutionary dynamics and the timing of evolutionary innovation in reptiles. Nat Commun 11:3322. https://doi.org/10.1038/s41467-020-17190-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smeets WJA, Hoogland PV, Lohman AH (1986) A forebrain atlas of the lizard Gekko gecko. J Comp Neurol 254:1–19

    Article  CAS  PubMed  Google Scholar 

  • Smith KT (2009) Eocene Lizards of the clade Geiseltaliellus from Messel and Geiseltal, Germany, and the early radiation of Iguanidae (Reptilia: Squamata). Bull Peabody Mus Nat Hist 50(2):219–306

    Article  Google Scholar 

  • Smith KT, Bullar B-AS, Köhler et al (2018) The only known jawed vertebrate with four eyes and the bauplan of the pineal complex. Curr Biol 28(7):1101-1107.e2

    Google Scholar 

  • Smith KT, Habersetzer J (2021) The anatomy, phylogenetic relationships, and autecology of the carnivorous lizard “Saniwafeisti Stritzke, 1983 from the Eocene of Messel, Germany. C R Palevol 20(23):441–506

    Google Scholar 

  • Smith KT, Scanferla A (2021) A nearly complete skeleton of the oldest definitive erycine boid (Messel, Germany). Geodiversitas 43:1–24

    Article  Google Scholar 

  • Sobral G, Simões TR, Schoch RR (2020) A tiny new Middle Triassic stem-lepidosauromorph from Germany: implications for the early evolution of lepidosauromorphs and the Vellbert fauna. Sci Rep 10:2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starck D (1979) Cranio-cerebral relations in recent reptiles. In: Gans AC, Northcutt RG, Ulinski P (eds) Biology of the reptilia, Vol 9, Neurology. Academic Press, London, pp 1–36

    Google Scholar 

  • Stepanova N, Bauer AM (2021) Phylogenetic history influences convergence for a specialized ecology: comparative skull morphology of African burrowing skinks (Squamata; Scincidae). BMC Ecol Evol 21:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Stocker MR, Kirk EC (2016) The first amphisbaenians from Texas, with notes on other squamates from the middle Eocene Purple Bench Locality. J Vert Paleontol 36(3):e1094081

    Article  Google Scholar 

  • Strong CRC, Palci A, Caldwell MW (2020) Insights into skull evolution infossorial snakes, as revealed by the cranial morphology of Atractaspis irregularis (Serpentes: Colubroidea). J Anat 238:146–172

    Google Scholar 

  • Sues H-D (2019) The rise of reptiles: 320 million years of evolution. Page 1 online resource. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Sues H-D, Reisz RT (1995) First record of the early Mesozoic sphenodontian Clevosarus (Lepidosauria: Rhynchocephalia) from the Southern Hemisphere. J Paleontol 69:123–126

    Article  Google Scholar 

  • Sulimski A (1975) Macrocephalosauridae and Polyglyphanodontidae (Sauria) from the Late Cretaceous of Mongolia. Acta Paleont Pol 33:25–102

    Google Scholar 

  • Szyndlar Z (1985) Ophidian fauna (Reptilia, Serpentes) from the uppermost Miocene of Algora (Spain). Estudios geol 41:447–465

    Article  Google Scholar 

  • Szyndlar Z (1988) Two new extinct species of the genera Malpolon and Vipera (Reptilia, Serpentes) from the Pliocene of Layna Spain. Acta Zool Cracov 31:687–706

    Google Scholar 

  • Szyndlar Z (1991) Ancestry of the Grass Snake (Natrix natrix): paleontological evidence. J Herpetol 25:412–418

    Article  Google Scholar 

  • Szyndlar Z, Zarova GA (1990) Neogene Cobras of the genus Naja (Serpentes: Elapidae) of East Europe. Ann Naturhist Mus Wien 91:53–61

    Google Scholar 

  • Tatarinov LP (1988) The cranial structure of the lower Eocene sea snake “Archaeophisturkmenicus from Turkmenia. Paleontol J 22:73–79

    Google Scholar 

  • Tchernov E, Rieppel O, Zaher H, Polcyn MJ, Jacobs LL (2000) A fossil snake with limbs. Science 287:2010–2012

    Article  CAS  PubMed  Google Scholar 

  • Triviño LN, Albino AM, Dozo MT et al (2018) First natural endocranial cast of a fossil snake (Cretaceous of Patagonia, Argentina). Anat Rec 301:9–20

    Article  Google Scholar 

  • Uetz P, Freed P, JHTR Database (2022). http://www.reptile-database.org. Accessed 06 Sept 2022

  • Underwood G (1957) On lizards of the family Pygopodidae. A contribution to the morphology and phylogeny of the Squamata. J Morphol 100:207–268

    Article  Google Scholar 

  • Underwood G (1967) A contribution to the classification of snakes. British Museum of Natural History, London

    Google Scholar 

  • Versluys J (1898) Die mittlere und äussere Ohrsphäre der Lacertilia und Rhynchocephalia, Inaugural Disseration Universität Giessen. Gustav Fischer, Jena.

    Google Scholar 

  • Vidal N, Hedges SB (2005) The phylogeny of squamate reptiles (lizards, snakes and amphisbaenians) inferred from nine nuclear protein-coding genes. C R Biol 328:1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Villa AJ, Abella DM, Alba S et al (2018) Revision of Varanus marathonensis (Squamata, Varanidae) based on historical and new material: morphology, systematics, and paleobiogeography of the European monitor lizards. PLoS ONE 13(12):e0207719

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitt LJ, Caldwell JP (2013) Herpetology: an introductory Biology of Amphibiansand reptiles. 4th ed. Academic Press

    Google Scholar 

  • Watanabe A, Gignac PM, Balanoff AM, Green TL, Kley NJ, Norell MA (2019) Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny? J Anat 234(3):291–305

    Article  PubMed  Google Scholar 

  • Watkinson GB (1906) The cranial nerves of Varanus bivittatus. Ge-genbauers Morph Jahrb 35:450–472

    Google Scholar 

  • Weber EG (1978) The reptile ear: its structure and function. Princeton University Press, Princeton

    Google Scholar 

  • Werneburg I, Sánchez-Villagra MR (2015) Skeletal heterochrony is associated with the anatomical specialization of snakes among squamate reptiles. Evolution 69:254–263

    Article  PubMed  Google Scholar 

  • Whiteside DI (1986) The head skeleton of the Rhaetian sphenodontid Diphydontosaurus avonis gen. et sp. nov., and the modernising of a living fossil. Phil Trans R Soc B 312(1156):379–430

    Google Scholar 

  • Wiens JJ, Kuczynski CA, Townsend TM et al (2010) Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst Biol 59:674–688

    Article  CAS  PubMed  Google Scholar 

  • Wiens JJ, Hutter CR, Mulcahy DG et al (2012) Resolving the phylogeny of lizards and snakes (Squamata) with extensive sampling of genes and species. Biol Lett 8(6):1043–1046

    Article  PubMed  PubMed Central  Google Scholar 

  • Willard WA (1915) The cranial nerves of Anolis carolinensis. Bull Mus Comp Zool Harv 59:18–116

    Google Scholar 

  • Wilson JA, Mohabey DM, Peters SE, Head JJ (2010) Predation upon hatchling dinosaurs by a new snake from the Late Cretaceous of India. PLoS Biol 8:e1000322

    Article  PubMed  PubMed Central  Google Scholar 

  • Witmer LM (1995) The extant phylogenetic bracket and the importance ofreconstructing soft tissues in fossils. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. New York, Cambridge University Press, pp 19–33

    Google Scholar 

  • Witmer LM, Ridgely RC, Dufeau DL et al (2008) Using CT to peer into the past: 3D visualization of the brain and ear regions of birds, crocodiles, and nonavian dinosaurs. In: Endo H, Frey R (eds) Anatomical imaging: towards a new morphology. Springer, Tokyo, pp 67–88

    Chapter  Google Scholar 

  • Wood PL, Guo X, Travers SL et al (2020a) Corrigendum to “Parachute geckos free fall into synonymy: Gekko phylogeny, and a new subgeneric classification, inferred from thousands of ultraconserved elements”. Mol Phylogenet Evol 146:106731

    Article  PubMed  Google Scholar 

  • Wood PL, Guo X, Travers SL et al (2020b) Parachute geckos free fall into synonymy: Gekko phylogeny, and a new subgeneric classification, inferred from thousands of ultraconserved elements. Mol Phylogenet Evol 146:107255

    Article  Google Scholar 

  • Wu X, Brinkman D, Russell A et al (1993) Oldest known amphisbaenian from the Upper Cretaceous of Chinese Inner Mongolia. Nature 366:57–59

    Article  Google Scholar 

  • Wyeth FJ (1924) The development of the auditory apparatus in Sphenodon punctatus with an account of the visceral pouches, aortic arches, and other accessory structures. Phil Trans R Soc Lon (B) 212:259–368

    Google Scholar 

  • Wyneken J (2007) Reptilian neurology: anatomy and function. Vet Clin Exot Anim 10:837–853

    Article  Google Scholar 

  • Wyeth FJ (1920) On the development of the auditory apparatus in Sphenodonpunctatus. Procc Roy Soc Lon B 91(639):224–228

    Google Scholar 

  • Xing L, O’Connor JK, Schmitz L et al (2020) Hummingbird-sized dinosaur from the Cretaceous period of Myanmar. Nature 579:245–249

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Norell MA (2015) The burrowing origin of modern snakes. Sci Adv 1:e1500743

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi H, Norell MA (2018) The bony labyrinth of Platecarpus (Squamata: Mosasauria) and aquatic adaptations in squamate reptiles. Palaeoworld. https://doi.org/10.1016/j.palwor.2018.12.001

  • Yi H, Norell M (2013) New Materials of Estesia mongoliensis (Squamata: Anguimorpha) and the Evolution of Venom Grooves in Lizards. Am Mus Nov 3767:1–31

    Google Scholar 

  • Yi H, Sampath D, Schoenfeld S et al (2012) Reconstruction of inner ear shape and size in mosasaurs (Reptilia: Squamata) reveals complex adaptation strategies in secondary aquatic reptiles. J Vert Paleontol 32:198A

    Google Scholar 

  • Young BA (1987) The cranial nerves of three species of sea snakes. Can J Zool 65(9). https://doi.org/10.1139/z87-338

  • Zaher H, Scanferla CA (2012) The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited. Zool J Linn Soc 164:194–238

    Article  Google Scholar 

  • Zaher H, Smith KT (2020) Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biol Lett 16:20200735

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaher H, Apesteguía S, Scanferla CA (2009) The anatomy of the Upper Cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes. Zool J Linn Soc 156:801–826

    Article  Google Scholar 

  • Zaher H, Mohabey DM, Grazziotin FG et al (2022a) The skull of Sanajeh indicus, a Cretaceous snake with an upper temporal bar, and the origin of ophidian wide-gaped feeding. Zool J Linn Soc

    Google Scholar 

  • Zaher H, Augusta BG, Rabinovich R et al (2022b) A review of the skull anatomy and phylogenetic affinities of marine pachyophiid snakes. In: Gower DJ, Zaher H (eds) The origin and early evolution of snakes. Cambridge University Press, Cambridge

    Google Scholar 

  • Zheng Y, Wiens JJ (2016) Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phil Evol 94:537–547

    Article  Google Scholar 


  • RetroSearch is an open source project built by @garambo | Open a GitHub Issue

    Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

    HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4