A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://libai.readthedocs.io/en/latest/tutorials/get_started/quick_run.html below:

Quick Run — libai documentation

libai Quick Run

This is a step-by-step tutorial on how to get started with LiBai:

Train Bert-large Model Parallelly Prepare the Data and the Vocab
  1. VOCAB_URL

  2. BIN_DATA_URL

  3. IDX_DATA_URL

$ tree data
path/to/bert_data
├── bert-base-chinese-vocab.txt
├── loss_compara_content_sentence.bin
└── loss_compara_content_sentence.idx
How to Train Bert_large Model with Parallelism

We provide train.sh for execute training. Before invoking the script, perform the following steps.

Step 1. Set data path and vocab path

# Refine data path and vocab path to data folder
vocab_file = "/path/to/bert_data/bert-base-chinese-vocab.txt"
data_prefix = "/path/to/bert_data/loss_compara_content_sentence"

Step 2. Configure your parameters

train.dist.data_parallel_size=4
train.dist.tensor_parallel_size=2

Step 3. Invoke parallel training

bash tools/train.sh tools/train_net.py configs/bert_large_pretrain.py 8
Train VisionTransformer on ImageNet Dataset Prepare the Data

For ImageNet, we use standard ImageNet dataset, which can be downloaded from http://image-net.org/.

$ tree data
imagenet
├── train
│   ├── class1
│      ├── img1.jpeg
│      ├── img2.jpeg
│      └── ...
│   ├── class2
│      ├── img3.jpeg
│      └── ...
│   └── ...
└── val
    ├── class1
       ├── img4.jpeg
       ├── img5.jpeg
       └── ...
    ├── class2
       ├── img6.jpeg
       └── ...
    └── ...
Train vit Model from Scratch
# Refine data path to imagenet data folder
dataloader.train.dataset[0].root = "/path/to/imagenet"
dataloader.test[0].dataset.root = "/path/to/imagenet"
bash tools/train.sh tools/train_net.py configs/vit_imagenet.py 8
# from .common.models.vit.vit_tiny_patch16_224 import model
from .common.models.vit.vit_base_patch16_224 import model

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4