Azure Schema Registry is a schema repository service hosted by Azure Event Hubs, providing schema storage, versioning, and management. This package provides an Avro encoder capable of encoding and decoding payloads containing Schema Registry schema identifiers and Avro-encoded content.
Source code | Package (PyPi) | API reference documentation | Samples | Changelog
DisclaimerAzure SDK Python packages support for Python 2.7 has ended 01 January 2022. For more information and questions, please refer to https://github.com/Azure/azure-sdk-for-python/issues/20691
Getting started Install the packageInstall the Azure Schema Registry Avro Encoder client library for Python with pip:
pip install azure-schemaregistry-avroencoder
Prerequisites:
To use this package, you must have:
Interaction with the Schema Registry Avro Encoder starts with an instance of AvroEncoder class, which takes the schema group name and the Schema Registry Client class. The client constructor takes the Event Hubs fully qualified namespace and and Azure Active Directory credential:
The fully qualified namespace of the Schema Registry instance should follow the format: <yournamespace>.servicebus.windows.net
.
An AAD credential that implements the TokenCredential protocol should be passed to the constructor. There are implementations of the TokenCredential
protocol available in the azure-identity package. To use the credential types provided by azure-identity
, please install the Azure Identity client library for Python with pip:
pip install azure-identity
pip install aiohttp
Create AvroEncoder using the azure-schemaregistry library:
import os
from azure.schemaregistry import SchemaRegistryClient
from azure.schemaregistry.encoder.avroencoder import AvroEncoder
from azure.identity import DefaultAzureCredential
credential = DefaultAzureCredential()
# Namespace should be similar to: '<your-eventhub-namespace>.servicebus.windows.net'
fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE']
group_name = os.environ['SCHEMAREGISTRY_GROUP']
schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, credential)
encoder = AvroEncoder(client=schema_registry_client, group_name=group_name)
Key concepts AvroEncoder
Provides API to encode to and decode from Avro Binary Encoding plus a content type with schema ID. Uses SchemaRegistryClient to get schema IDs from schema content or vice versa.
Supported message modelsSupport has been added to certain Azure Messaging SDK model classes for interoperability with the AvroEncoder
. These models are subtypes of the MessageType
protocol defined under the azure.schemaregistry.encoder.avroencoder
namespace. Currently, the supported model classes are:
azure.eventhub.EventData
for azure-eventhub>=5.9.0
If a message type that follows the MessageType protocol is provided to the encoder for encoding, it will set the corresponding content and content type properties, where:
content
: Avro payload (in general, format-specific payload)
content type
: a string of the format avro/binary+<schema ID>
, where:
avro/binary
is the format indicator<schema ID>
is the hexadecimal representation of GUID, same format and byte order as the string from the Schema Registry service.If EventData
is passed in as the message type, the following properties will be set on the EventData
object:
body
property will be set to the content value.content_type
property will be set to the content type value.If message type is not provided, and by default, the encoder will create the following dict: {"content": <Avro encoded payload>, "content_type": 'avro/binary+<schema ID>' }
The following sections provide several code snippets covering some of the most common Schema Registry tasks, including:
EncodingUse the AvroEncoder.encode
method to encode content with the given Avro schema. The method will use a schema previously registered to the Schema Registry service and keep the schema cached for future encoding usage. In order to avoid pre-registering the schema to the service and automatically register it with the encode
method, the keyword argument auto_register=True
should be passed to the AvroEncoder
constructor.
import os
from azure.schemaregistry import SchemaRegistryClient
from azure.schemaregistry.encoder.avroencoder import AvroEncoder
from azure.identity import DefaultAzureCredential
from azure.eventhub import EventData
token_credential = DefaultAzureCredential()
fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE']
group_name = os.environ['SCHEMAREGISTRY_GROUP']
name = "example.avro.User"
format = "Avro"
definition = """
{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}
]
}"""
schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, token_credential)
schema_registry_client.register_schema(group_name, name, definition, format)
encoder = AvroEncoder(client=schema_registry_client, group_name=group_name)
with encoder:
dict_content = {"name": "Ben", "favorite_number": 7, "favorite_color": "red"}
event_data = encoder.encode(dict_content, schema=definition, message_type=EventData)
# OR
message_content_dict = encoder.encode(dict_content, schema=definition)
event_data = EventData.from_message_content(message_content_dict["content"], message_content_dict["content_type"])
Decoding
Use the AvroEncoder.decode
method to decode the Avro-encoded content by either:
content
(type bytes) and content_type
(type string). The method automatically retrieves the schema from the Schema Registry Service and keeps the schema cached for future decoding usage.import os
from azure.schemaregistry import SchemaRegistryClient
from azure.schemaregistry.encoder.avroencoder import AvroEncoder
from azure.identity import DefaultAzureCredential
token_credential = DefaultAzureCredential()
fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE']
group_name = "<your-group-name>"
schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, token_credential)
encoder = AvroEncoder(client=schema_registry_client)
with encoder:
# event_data is an EventData object with Avro encoded body
dict_content = {"name": "Ben", "favorite_number": 7, "favorite_color": "red"}
event_data = encoder.encode(dict_content, schema=definition, message_type=EventData)
decoded_content = encoder.decode(event_data)
# OR
encoded_bytes = b'<content_encoded_by_azure_schema_registry_avro_encoder>'
content_type = 'avro/binary+<schema_id_of_corresponding_schema>'
content_dict = {"content": encoded_bytes, "content_type": content_type}
decoded_content = encoder.decode(content_dict)
Event Hubs Sending Integration
Integration with Event Hubs to send an EventData
object with body
set to Avro-encoded content and corresponding content_type
.
import os
from azure.eventhub import EventHubProducerClient, EventData
from azure.schemaregistry import SchemaRegistryClient
from azure.schemaregistry.encoder.avroencoder import AvroEncoder
from azure.identity import DefaultAzureCredential
token_credential = DefaultAzureCredential()
fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE']
group_name = os.environ['SCHEMAREGISTRY_GROUP']
eventhub_connection_str = os.environ['EVENT_HUB_CONN_STR']
eventhub_name = os.environ['EVENT_HUB_NAME']
definition = """
{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}
]
}"""
schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, token_credential)
avro_encoder = AvroEncoder(client=schema_registry_client, group_name=group_name, auto_register=True)
eventhub_producer = EventHubProducerClient.from_connection_string(
conn_str=eventhub_connection_str,
eventhub_name=eventhub_name
)
with eventhub_producer, avro_encoder:
event_data_batch = eventhub_producer.create_batch()
dict_content = {"name": "Bob", "favorite_number": 7, "favorite_color": "red"}
event_data = avro_encoder.encode(dict_content, schema=definition, message_type=EventData)
event_data_batch.add(event_data)
eventhub_producer.send_batch(event_data_batch)
Event Hubs Receiving Integration
Integration with Event Hubs to receive an EventData
object and decode the the Avro-encoded body
value.
import os
from azure.eventhub import EventHubConsumerClient
from azure.schemaregistry import SchemaRegistryClient
from azure.schemaregistry.encoder.avroencoder import AvroEncoder
from azure.identity import DefaultAzureCredential
token_credential = DefaultAzureCredential()
fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE']
group_name = os.environ['SCHEMAREGISTRY_GROUP']
eventhub_connection_str = os.environ['EVENT_HUB_CONN_STR']
eventhub_name = os.environ['EVENT_HUB_NAME']
schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, token_credential)
avro_encoder = AvroEncoder(client=schema_registry_client, group_name=group_name)
eventhub_consumer = EventHubConsumerClient.from_connection_string(
conn_str=eventhub_connection_str,
consumer_group='$Default',
eventhub_name=eventhub_name,
)
def on_event(partition_context, event):
decoded_content = avro_encoder.decode(event)
with eventhub_consumer, avro_encoder:
eventhub_consumer.receive(on_event=on_event, starting_position="-1")
Troubleshooting General
Azure Schema Registry Avro Encoder raises exceptions defined in Azure Core if errors are encountered when communicating with the Schema Registry service. Errors related to invalid content/content types and invalid schemas will be raised as azure.schemaregistry.encoder.avroencoder.InvalidContentError
and azure.schemaregistry.encoder.avroencoder.InvalidSchemaError
, respectively, where __cause__
will contain the underlying exception raised by the Apache Avro library.
This library uses the standard logging library for logging. Basic information about HTTP sessions (URLs, headers, etc.) is logged at INFO level.
Detailed DEBUG level logging, including request/response bodies and unredacted headers, can be enabled on a client with the logging_enable
argument:
import sys
import os
import logging
from azure.schemaregistry import SchemaRegistryClient
from azure.schemaregistry.encoder.avroencoder import AvroEncoder
from azure.identity import DefaultAzureCredential
# Create a logger for the SDK
logger = logging.getLogger('azure.schemaregistry')
logger.setLevel(logging.DEBUG)
# Configure a console output
handler = logging.StreamHandler(stream=sys.stdout)
logger.addHandler(handler)
fully_qualified_namespace = os.environ['SCHEMAREGISTRY_FULLY_QUALIFIED_NAMESPACE']
group_name = os.environ['SCHEMAREGISTRY_GROUP']
credential = DefaultAzureCredential()
schema_registry_client = SchemaRegistryClient(fully_qualified_namespace, credential, logging_enable=True)
# This client will log detailed information about its HTTP sessions, at DEBUG level
encoder = AvroEncoder(client=schema_registry_client, group_name=group_name)
Similarly, logging_enable
can enable detailed logging for a single operation, even when it isn't enabled for the client:
encoder.encode(dict_content, schema=definition, logging_enable=True)
Next steps More sample code
Further examples demonstrating common Azure Schema Registry Avro Encoder scenarios are in the samples directory.
ContributingThis project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.
When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.
This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4