Compares two double-precision floating point numbers for equality and, if they are equal, replaces the first value, as an atomic operation.
public:
static double CompareExchange(double % location1, double value, double comparand);
public static double CompareExchange(ref double location1, double value, double comparand);
static member CompareExchange : double * double * double -> double
Public Shared Function CompareExchange (ByRef location1 As Double, value As Double, comparand As Double) As Double
Parameters
The destination, whose value is compared with comparand
and possibly replaced.
The value that replaces the destination value if the comparison results in equality.
The value that is compared to the value at location1
.
The original value in location1
.
The address of location1
is a null pointer.
The following code example demonstrates a thread-safe method that accumulates a running total of Double values. Two threads add a series of Double values using the thread-safe method and ordinary addition, and when the threads complete the totals are compared. On a dual-processor computer, there is a significant difference in the totals.
In the thread-safe method, the initial value of the running total is saved, and then the CompareExchange method is used to exchange the newly computed total with the old total. If the return value is not equal to the saved value of the running total, then another thread has updated the total in the meantime. In that case, the attempt to update the running total must be repeated.
// This example demonstrates a thread-safe method that adds to a
// running total.
using System;
using System.Threading;
public class ThreadSafe
{
// Field totalValue contains a running total that can be updated
// by multiple threads. It must be protected from unsynchronized
// access.
private double totalValue = 0.0;
// The Total property returns the running total.
public double Total { get { return totalValue; }}
// AddToTotal safely adds a value to the running total.
public double AddToTotal(double addend)
{
double initialValue, computedValue;
do
{
// Save the current running total in a local variable.
initialValue = totalValue;
// Add the new value to the running total.
computedValue = initialValue + addend;
// CompareExchange compares totalValue to initialValue. If
// they are not equal, then another thread has updated the
// running total since this loop started. CompareExchange
// does not update totalValue. CompareExchange returns the
// contents of totalValue, which do not equal initialValue,
// so the loop executes again.
}
while (initialValue != Interlocked.CompareExchange(ref totalValue,
computedValue, initialValue));
// If no other thread updated the running total, then
// totalValue and initialValue are equal when CompareExchange
// compares them, and computedValue is stored in totalValue.
// CompareExchange returns the value that was in totalValue
// before the update, which is equal to initialValue, so the
// loop ends.
// The function returns computedValue, not totalValue, because
// totalValue could be changed by another thread between
// the time the loop ends and the function returns.
return computedValue;
}
}
public class Test
{
// Create an instance of the ThreadSafe class to test.
private static ThreadSafe ts = new ThreadSafe();
private static double control;
private static Random r = new Random();
private static ManualResetEvent mre = new ManualResetEvent(false);
public static void Main()
{
// Create two threads, name them, and start them. The
// thread will block on mre.
Thread t1 = new Thread(TestThread);
t1.Name = "Thread 1";
t1.Start();
Thread t2 = new Thread(TestThread);
t2.Name = "Thread 2";
t2.Start();
// Now let the threads begin adding random numbers to
// the total.
mre.Set();
// Wait until all the threads are done.
t1.Join();
t2.Join();
Console.WriteLine("Thread safe: {0} Ordinary Double: {1}",
ts.Total, control);
}
private static void TestThread()
{
// Wait until the signal.
mre.WaitOne();
for(int i = 1; i <= 1000000; i++)
{
// Add to the running total in the ThreadSafe instance, and
// to an ordinary double.
//
double testValue = r.NextDouble();
control += testValue;
ts.AddToTotal(testValue);
}
}
}
/* On a dual-processor computer, this code example produces output
similar to the following:
Thread safe: 998068.049623744 Ordinary Double: 759775.417190589
*/
' This example demonstrates a thread-safe method that adds to a
' running total.
Imports System.Threading
Public Class ThreadSafe
' Field totalValue contains a running total that can be updated
' by multiple threads. It must be protected from unsynchronized
' access.
Private totalValue As Double = 0.0
' The Total property returns the running total.
Public ReadOnly Property Total As Double
Get
Return totalValue
End Get
End Property
' AddToTotal safely adds a value to the running total.
Public Function AddToTotal(ByVal addend As Double) As Double
Dim initialValue, computedValue As Double
Do
' Save the current running total in a local variable.
initialValue = totalValue
' Add the new value to the running total.
computedValue = initialValue + addend
' CompareExchange compares totalValue to initialValue. If
' they are not equal, then another thread has updated the
' running total since this loop started. CompareExchange
' does not update totalValue. CompareExchange returns the
' contents of totalValue, which do not equal initialValue,
' so the loop executes again.
Loop While initialValue <> Interlocked.CompareExchange( _
totalValue, computedValue, initialValue)
' If no other thread updated the running total, then
' totalValue and initialValue are equal when CompareExchange
' compares them, and computedValue is stored in totalValue.
' CompareExchange returns the value that was in totalValue
' before the update, which is equal to initialValue, so the
' loop ends.
' The function returns computedValue, not totalValue, because
' totalValue could be changed by another thread between
' the time the loop ends and the function returns.
Return computedValue
End Function
End Class
Public Class Test
' Create an instance of the ThreadSafe class to test.
Private Shared ts As New ThreadSafe()
Private Shared control As Double
Private Shared r As New Random()
Private Shared mre As New ManualResetEvent(false)
<MTAThread> _
Public Shared Sub Main()
' Create two threads, name them, and start them. The
' threads will block on mre.
Dim t1 As New Thread(AddressOf TestThread)
t1.Name = "Thread 1"
t1.Start()
Dim t2 As New Thread(AddressOf TestThread)
t2.Name = "Thread 2"
t2.Start()
' Now let the threads begin adding random numbers to
' the total.
mre.Set()
' Wait until all the threads are done.
t1.Join()
t2.Join()
Console.WriteLine("Thread safe: {0} Ordinary Double: {1}", ts.Total, control)
End Sub
Private Shared Sub TestThread()
' Wait until the signal.
mre.WaitOne()
For i As Integer = 1 to 1000000
' Add to the running total in the ThreadSafe instance, and
' to an ordinary double.
'
Dim testValue As Double = r.NextDouble
control += testValue
ts.AddToTotal(testValue)
Next
End Sub
End Class
' On a dual-processor computer, this code example produces output
' similar to the following:
'
'Thread safe: 998068.049623744 Ordinary Double: 759775.417190589
Remarks
If comparand
and the value in location1
are equal, then value
is stored in location1
. Otherwise, no operation is performed. The compare and exchange operations are performed as an atomic operation. The return value of CompareExchange is the original value in location1
, whether or not the exchange takes place.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4