A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://learn.microsoft.com/en-us/dotnet/api/system.math.log below:

Math.Log Method (System) | Microsoft Learn

Source:
Math.cs
Source:
Math.cs
Source:
Math.cs
Source:
Math.cs

Returns the logarithm of a specified number in a specified base.

public:
 static double Log(double a, double newBase);
public static double Log(double a, double newBase);
static member Log : double * double -> double
Public Shared Function Log (a As Double, newBase As Double) As Double
Parameters
a
Double

The number whose logarithm is to be found.

newBase
Double

The base of the logarithm.

Returns

One of the values in the following table. (+Infinity denotes PositiveInfinity, -Infinity denotes NegativeInfinity, and NaN denotes NaN.)

a newBase Return value a> 0 (0 <newBase< 1) -or- (newBase> 1) lognewBase(a) a< 0 (any value) NaN (any value) newBase< 0 NaN a != 1 newBase = 0 NaN a != 1 newBase = +Infinity NaN a = NaN (any value) NaN (any value) newBase = NaN NaN (any value) newBase = 1 NaN a = 0 0 <newBase< 1 +Infinity a = 0 newBase> 1 -Infinity a = +Infinity 0 <newBase< 1 -Infinity a = +Infinity newBase> 1 +Infinity a = 1 newBase = 0 0 a = 1 newBase = +Infinity 0 Examples

The following example uses Log to evaluate certain logarithmic identities for selected values.

// Example for the Math.Log( double ) and Math.Log( double, double ) methods.
using System;

class LogDLogDD
{
    public static void Main()
    {
        Console.WriteLine(
            "This example of Math.Log( double ) and " +
            "Math.Log( double, double )\n" +
            "generates the following output.\n" );
        Console.WriteLine(
            "Evaluate these identities with " +
            "selected values for X and B (base):" );
        Console.WriteLine( "   log(B)[X] == 1 / log(X)[B]" );
        Console.WriteLine( "   log(B)[X] == ln[X] / ln[B]" );
        Console.WriteLine( "   log(B)[X] == log(B)[e] * ln[X]" );

        UseBaseAndArg(0.1, 1.2);
        UseBaseAndArg(1.2, 4.9);
        UseBaseAndArg(4.9, 9.9);
        UseBaseAndArg(9.9, 0.1);
    }

    // Evaluate logarithmic identities that are functions of two arguments.
    static void UseBaseAndArg(double argB, double argX)
    {
        // Evaluate log(B)[X] == 1 / log(X)[B].
        Console.WriteLine(
            "\n                   Math.Log({1}, {0}) == {2:E16}" +
            "\n             1.0 / Math.Log({0}, {1}) == {3:E16}",
            argB, argX, Math.Log(argX, argB),
            1.0 / Math.Log(argB, argX) );

        // Evaluate log(B)[X] == ln[X] / ln[B].
        Console.WriteLine(
            "        Math.Log({1}) / Math.Log({0}) == {2:E16}",
            argB, argX, Math.Log(argX) / Math.Log(argB) );

        // Evaluate log(B)[X] == log(B)[e] * ln[X].
        Console.WriteLine(
            "Math.Log(Math.E, {0}) * Math.Log({1}) == {2:E16}",
            argB, argX, Math.Log(Math.E, argB) * Math.Log(argX) );
    }
}

/*
This example of Math.Log( double ) and Math.Log( double, double )
generates the following output.

Evaluate these identities with selected values for X and B (base):
   log(B)[X] == 1 / log(X)[B]
   log(B)[X] == ln[X] / ln[B]
   log(B)[X] == log(B)[e] * ln[X]

                   Math.Log(1.2, 0.1) == -7.9181246047624818E-002
             1.0 / Math.Log(0.1, 1.2) == -7.9181246047624818E-002
        Math.Log(1.2) / Math.Log(0.1) == -7.9181246047624818E-002
Math.Log(Math.E, 0.1) * Math.Log(1.2) == -7.9181246047624804E-002

                   Math.Log(4.9, 1.2) == 8.7166610085093179E+000
             1.0 / Math.Log(1.2, 4.9) == 8.7166610085093161E+000
        Math.Log(4.9) / Math.Log(1.2) == 8.7166610085093179E+000
Math.Log(Math.E, 1.2) * Math.Log(4.9) == 8.7166610085093179E+000

                   Math.Log(9.9, 4.9) == 1.4425396251981288E+000
             1.0 / Math.Log(4.9, 9.9) == 1.4425396251981288E+000
        Math.Log(9.9) / Math.Log(4.9) == 1.4425396251981288E+000
Math.Log(Math.E, 4.9) * Math.Log(9.9) == 1.4425396251981288E+000

                   Math.Log(0.1, 9.9) == -1.0043839404494075E+000
             1.0 / Math.Log(9.9, 0.1) == -1.0043839404494075E+000
        Math.Log(0.1) / Math.Log(9.9) == -1.0043839404494075E+000
Math.Log(Math.E, 9.9) * Math.Log(0.1) == -1.0043839404494077E+000
*/
// Example for the Math.Log( double ) and Math.Log( double, double ) methods.
open System

// Evaluate logarithmic identities that are functions of two arguments.
let useBaseAndArg argB argX =
    // Evaluate log(B)[X] == 1 / log(X)[B].
    printfn $"""
                   Math.Log({argX}, {argB}) == {Math.Log(argX, argB):E16}
             1.0 / Math.Log({argB}, {argX}) == {1. / Math.Log(argB, argX):E16}"""

    // Evaluate log(B)[X] == ln[X] / ln[B].
    printfn $"        Math.Log({argX}) / Math.Log({argB}) == {Math.Log argX / Math.Log argB:E16}"

    // Evaluate log(B)[X] == log(B)[e] * ln[X].
    printfn $"Math.Log(Math.E, {argB}) * Math.Log({argX}) == {Math.Log(Math.E, argB) * Math.Log argX:E16}"


printfn
    """This example of Math.Log( double ) and Math.Log( double, double )
generates the following output.

printfn "Evaluate these identities with selected values for X and B (base):"""
printfn "   log(B)[X] == 1 / log(X)[B]"
printfn "   log(B)[X] == ln[X] / ln[B]" 
printfn "   log(B)[X] == log(B)[e] * ln[X]" 

useBaseAndArg 0.1 1.2
useBaseAndArg 1.2 4.9
useBaseAndArg 4.9 9.9
useBaseAndArg 9.9 0.1


// This example of Math.Log( double ) and Math.Log( double, double )
// generates the following output.
//
// Evaluate these identities with selected values for X and B (base):
//    log(B)[X] == 1 / log(X)[B]
//    log(B)[X] == ln[X] / ln[B]
//    log(B)[X] == log(B)[e] * ln[X]
//
//                    Math.Log(1.2, 0.1) == -7.9181246047624818E-002
//              1.0 / Math.Log(0.1, 1.2) == -7.9181246047624818E-002
//         Math.Log(1.2) / Math.Log(0.1) == -7.9181246047624818E-002
// Math.Log(Math.E, 0.1) * Math.Log(1.2) == -7.9181246047624804E-002
//
//                    Math.Log(4.9, 1.2) == 8.7166610085093179E+000
//              1.0 / Math.Log(1.2, 4.9) == 8.7166610085093161E+000
//         Math.Log(4.9) / Math.Log(1.2) == 8.7166610085093179E+000
// Math.Log(Math.E, 1.2) * Math.Log(4.9) == 8.7166610085093179E+000
//
//                    Math.Log(9.9, 4.9) == 1.4425396251981288E+000
//              1.0 / Math.Log(4.9, 9.9) == 1.4425396251981288E+000
//         Math.Log(9.9) / Math.Log(4.9) == 1.4425396251981288E+000
// Math.Log(Math.E, 4.9) * Math.Log(9.9) == 1.4425396251981288E+000
//
//                    Math.Log(0.1, 9.9) == -1.0043839404494075E+000
//              1.0 / Math.Log(9.9, 0.1) == -1.0043839404494075E+000
//         Math.Log(0.1) / Math.Log(9.9) == -1.0043839404494075E+000
// Math.Log(Math.E, 9.9) * Math.Log(0.1) == -1.0043839404494077E+000
' Example for the Math.Log( Double ) and Math.Log( Double, Double ) methods.
Module LogDLogDD
   
    Sub Main()
        Console.WriteLine( _
            "This example of Math.Log( Double ) and " + _
            "Math.Log( Double, Double )" & vbCrLf & _
            "generates the following output." & vbCrLf)
        Console.WriteLine( _
            "Evaluate these identities with selected " & _
            "values for X and B (base):")
        Console.WriteLine("   log(B)[X] = 1 / log(X)[B]")
        Console.WriteLine("   log(B)[X] = ln[X] / ln[B]")
        Console.WriteLine("   log(B)[X] = log(B)[e] * ln[X]")
          
        UseBaseAndArg(0.1, 1.2)
        UseBaseAndArg(1.2, 4.9)
        UseBaseAndArg(4.9, 9.9)
        UseBaseAndArg(9.9, 0.1)
    End Sub
       
    ' Evaluate logarithmic identities that are functions of two arguments.
    Sub UseBaseAndArg(argB As Double, argX As Double)

        ' Evaluate log(B)[X] = 1 / log(X)[B].
        Console.WriteLine( _
            vbCrLf & "                   Math.Log({1}, {0}) = {2:E16}" + _
            vbCrLf & "             1.0 / Math.Log({0}, {1}) = {3:E16}", _
            argB, argX, Math.Log(argX, argB), _
            1.0 / Math.Log(argB, argX))
          
        ' Evaluate log(B)[X] = ln[X] / ln[B].
        Console.WriteLine( _
            "        Math.Log({1}) / Math.Log({0}) = {2:E16}", _
            argB, argX, Math.Log(argX) / Math.Log(argB))
          
        ' Evaluate log(B)[X] = log(B)[e] * ln[X].
        Console.WriteLine( _
            "Math.Log(Math.E, {0}) * Math.Log({1}) = {2:E16}", _
            argB, argX, Math.Log(Math.E, argB) * Math.Log(argX))

    End Sub
End Module 'LogDLogDD

' This example of Math.Log( Double ) and Math.Log( Double, Double )
' generates the following output.
' 
' Evaluate these identities with selected values for X and B (base):
'    log(B)[X] = 1 / log(X)[B]
'    log(B)[X] = ln[X] / ln[B]
'    log(B)[X] = log(B)[e] * ln[X]
' 
'                    Math.Log(1.2, 0.1) = -7.9181246047624818E-002
'              1.0 / Math.Log(0.1, 1.2) = -7.9181246047624818E-002
'         Math.Log(1.2) / Math.Log(0.1) = -7.9181246047624818E-002
' Math.Log(Math.E, 0.1) * Math.Log(1.2) = -7.9181246047624804E-002
' 
'                    Math.Log(4.9, 1.2) = 8.7166610085093179E+000
'              1.0 / Math.Log(1.2, 4.9) = 8.7166610085093161E+000
'         Math.Log(4.9) / Math.Log(1.2) = 8.7166610085093179E+000
' Math.Log(Math.E, 1.2) * Math.Log(4.9) = 8.7166610085093179E+000
' 
'                    Math.Log(9.9, 4.9) = 1.4425396251981288E+000
'              1.0 / Math.Log(4.9, 9.9) = 1.4425396251981288E+000
'         Math.Log(9.9) / Math.Log(4.9) = 1.4425396251981288E+000
' Math.Log(Math.E, 4.9) * Math.Log(9.9) = 1.4425396251981288E+000
' 
'                    Math.Log(0.1, 9.9) = -1.0043839404494075E+000
'              1.0 / Math.Log(9.9, 0.1) = -1.0043839404494075E+000
'         Math.Log(0.1) / Math.Log(9.9) = -1.0043839404494075E+000
' Math.Log(Math.E, 9.9) * Math.Log(0.1) = -1.0043839404494077E+000
Remarks

This method calls into the underlying C runtime, and the exact result or valid input range may differ between different operating systems or architectures.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4