Using the &
operator or basedtyping.Intersection
you can denote intersection types:
class Growable(ABC, Generic[T]): @abstractmethod def add(self, item: T): ... class Resettable(ABC): @abstractmethod def reset(self): ... def f(x: Resettable & Growable[str]): x.reset() x.add("first")Type Joins¶
Mypy joins types to their common base type:
a: int b: str reveal_type(a if bool() else b) # Revealed type is "builtins.object"
Basedmypy joins types into unions instead:
a: int b: str reveal_type(a if bool() else b) # Revealed type is "int | str"Based Callable¶
Basedmypy supports callable and function syntax types:
a: "(int) -> str" = lambda x: str(x) # Callable b: "def (int) -> str" = lambda x: str(x) # FunctionType
In mypy, all Callable
s are assumed to be functions (FunctionType
/builtins.function
), but this is not the case for instances that have a __call__ method.
Basedmypy corrects this by separating Callable and FunctionType:
class A: def __call__(self, i: int) -> str: ... a: "(int) -> str" = A() a.__name__ # error: "() -> int" has no attribute "__name__" [attr-defined] b: "def (int) -> str" = lambda i: "" b.__name__ # okay: `FunctionType` has a `__name__` attribute
Basedmypy warns against unsafe and ambiguous assignments of callables on classes:
class A: a: "() -> int" = lambda: 10 # error: Don't assign a "FunctionType" via the class, it will become a "MethodType"
Additionally, a Protocol
_NamedCallable
is introduced to represent the union of all ‘named’ callable implementations:
class A: def f(self): ... reveal_type(A.f) # "def (self: A) -> None" reveal_type(A().f) # "_NamedCallable & () -> None"Bare Literals¶
Literal
is so cumbersome! Just use a bare literal instead:
class Color(Enum): RED = auto() a: 1 | 2 b: True | Color.REDDefault Return Type¶
The default return type of functions is None
instead of Any
: (configurable with the default_return
option.)
def f(name: str): print(f"Hello, {name}!") reveal_type(f) # (str) -> NoneGeneric
TypeVar
Bounds¶
Basedmpy allows the bounds of TypeVar
s to be generic.
So you are able to have functions with polymorphic generic parameters:
E = TypeVar("E") I = TypeVar("I", bound=Iterable[E]) def foo(i: I, e: E) -> I: assert e not in i return i reveal_type(foo(["based"], "mypy")) # N: Revealed type is "list[str]" reveal_type(foo({1, 2}, 3)) # N: Revealed type is "set[int]"
TypeVar
usages work properly¶
mypy allows various invalid usages of TypeVar
, which are corrected in basedmypy.
it’s invalid to provide variance to a constrained TypeVar
because they aren’t generic, they represent a set of choices that the TypeVar
can be replaced with:
E = TypeVar("E", int, str, covariant=True) # mypy doesn't report the error here G = TypeVar("G", int, str) class P(Protocol[G]): # mypy reports an invalid error here def f() -> E: ... class A[T: (object, str)]: ... a = A[int]() # mypy doesn't report the error here class B[T: int]: ... type C = B[object] # mypy doesn't report the error hereReinvented type guards¶
TypeGuard
acts similar to cast
, which is often sub-optimal and dangerous:
def is_str_list(val: list[object]) -> TypeGuard[list[str]]: return all(isinstance(x, str) for x in val) l1: list[object] = [] l2 = l1 if is_str_list(l1): l2.append(100) reveal_type(l1[0]) # Revealed type is "str", at runtime it is 100 class A: ... class B(A): ... def is_a(val: object) -> TypeGuard[A]: ... b = B() if is_a(b): reveal_type(b) # A, not B
Basedmypy introduces a simpler and more powerful denotation for type-guards, and changes their behavior to be safer.
def is_int(value: object) -> value is int: ...
Type-guards don’t widen:
a: bool if is_int(a): reveal_type(a) # Revealed type is "bool"
Type-guards narrow in the negative case:
a: int | str if is_int(a): reveal_type(a) # Revealed type is "int" else: reveal_type(a) # Revealed type is "str"
Type-guards work on the implicit self
and cls
parameters:
class A: def guard(self) -> self is B: ... class B(A): ... a = A() if a.guard(): reveal_type(a) # Revealed type is "B"
Invalid type-guards show an error:
def guard(x: str) -> x is int: # error: A type-guard's type must be assignable to its parameter's type.
Type-guards that only narrow when returning true are denoted as:
def is_positive_int(x: object) -> x is int if True else False: return isinstance(x, int) and x > 0 i: int | None if is_positive_int(i): reveal_type(i) # Revealed type is "int" else: reveal_type(i) # Revealed type is "int | None"
If you want to achieve something similar to the old TypeGuard
:
def as_str_list(val: list[object]) -> list[str] | None: return ( cast(list[str], val) if all(isinstance(x, str) for x in val) else None ) a: list[object] if (str_a := as_str_list(a)) is not None: ... # or def is_str_list(val: list[object]) -> bool: return all(isinstance(x, str) for x in val) a: list[object] if is_str_list(a): str_a = cast(list[str], a) ...Covariant Mapping key type¶
The key type of Mapping
is fixed to be covariant:
a: Mapping[str, str] b: Mapping[object, object] = a # no errorTuple Literal Types¶
Basedmypy allows denotation of tuple types with tuple literals:
Types in Messages¶Basedmypy makes significant changes to error and info messages, consider:
T = TypeVar("T", bound=int) def f(a: T, b: list[str | 1 | 2]): reveal_type((a, b)) reveal_type(f)
Mypy shows:
Revealed type is "tuple[T`-1, builtins.list[Union[builtins.str, Literal[1], Literal[2]]]]" Revealed type is "def [T <: builtins.int] (a: T`-1, b: builtins.list[Union[builtins.str, Literal[1], Literal[2]]]) -> Any"
Basedmypy shows:
Revealed type is "(T@f, list[str | 1 | 2])" Revealed type is "def [T: int] (a: T, b: list[str | 1 | 2]) -> None"Reveal Type Narrowed¶
The defined type of a variable will be shown in the message for reveal_type:
a: object a = 1 reveal_type(a) # Revealed type is "int" (narrowed from "object")Typed
functools.Cache
¶
In mypy, functools.cache
is unsafe:
@cache def f(): ... f(1, 2, 3) # no error
This is resolved:
@cache def f(): ... f(1, 2, 3) # error: expected no argsChecked f-strings¶
f"{None:0>2}" # error: The type "None" doesn't support format-specifiers f"{date(1,1,1):%}" # error: Invalid trailing '%', escape with '%%' f"{'s':.2f}" # error: Incompatible types in string interpolation (expression has type "str", placeholder has type "int | float | complex")Support for typing.type_check_only¶
typing.type_check_only is a decorator that specifies that a value is not available at runtime:
ellipsis # error: Symbol "ellipsis" is not accessible at runtime [type-check-only] function # error: Symbol "function" is not accessible at runtime [type-check-only]Annotations in Functions¶
Basedmypy handles type annotations in function bodies as unevaluated:
def f(): a: int | str # no error in python 3.9, this annotation isn't evaluatedChecked Argument Names¶
Basedmypy will warn when subtypes have different keyword arguments:
class A: def f(self, a: int): ... class B(A): @override def f(self, b: int): ... # error: Signature of "f" incompatible with supertype "A"Regex Checks¶
Basedmypy will report invalid regex patterns, and also analyze regex values to infer the group composition of a resulting Match
object:
re.compile("as(df") # error: missing ), unterminated subpattern at position 0 [regex] if m := re.search("(a)?(b)", s): reveal_type(m.groups()) # Revealed type is "(str | None, str)" if m := re.search("(?P<foo>a)", s): reveal_type(m.group("foo")) reveal_type(m.group("bar")) # error: no such group: 'bar' [regex]Helpful String Check¶
<object object at 0x0123456789ABCDEF> and None accidentally appearing in user facing messages is not ideal, so basedmypy will warn against it:
class A: ... f"{A()}" # error: The type "A" doesn't define a __str__ or __format__ method [unhelpful-string] f"{print("hi")}" # error: The string for "None" isn't helpful for a user-facing message [unhelpful-string]
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4