A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/cheat_sheet.html below:

Website Navigation


Cheat Sheet — Intel&#174 Extension for PyTorch* 2.8.0+cpu documentation

Basic CPU Installation python -m pip install intel_extension_for_pytorch Import Intel® Extension for PyTorch* import intel_extension_for_pytorch as ipex Capture a Verbose Log (Command Prompt) export ONEDNN_VERBOSE=1 Optimization During Training model = ...
optimizer = ...
model.train()
model, optimizer = ipex.optimize(model, optimizer=optimizer) Optimization During Inference model = ...
model.eval()
model = ipex.optimize(model) Optimization Using the Low-Precision Data Type bfloat16
During Training (Default FP32) model = ...
optimizer = ...
model.train()

model, optimizer = ipex.optimize(model, optimizer=optimizer, dtype=torch.bfloat16)

with torch.no_grad():


with torch.cpu.amp.autocast():
model(data) Optimization Using the Low-Precision Data Type bfloat16
During Inference (Default FP32) model = ...
model.eval()

model = ipex.optimize(model, dtype=torch.bfloat16)

with torch.cpu.amp.autocast():


model(data) [Prototype] Fast BERT Optimization from transformers import BertModel
model = BertModel.from_pretrained("bert-base-uncased")
model.eval()

model = ipex.fast_bert(model, dtype=torch.bfloat16)

Run CPU Launch Script (Command Prompt):
Automate Configuration Settings for Performance ipexrun [knobs] <your_pytorch_script> [args] [Prototype] Run HyperTune to perform hyperparameter/execution configuration search python -m intel_extension_for_pytorch.cpu.hypertune --conf-file <your_conf_file> <your_python_script> [args] [Prototype] Enable Graph capture model = …
model.eval()
model = ipex.optimize(model, graph_mode=True) Post-Training INT8 Quantization (Static) model = …
model.eval()
data = …

qconfig = ipex.quantization.default_static_qconfig

prepared_model = ipex.quantization.prepare(model, qconfig, example_inputs=data, anyplace=False)

for d in calibration_data_loader():


prepared_model(d)

converted_model = ipex.quantization.convert(prepared_model)

Post-Training INT8 Quantization (Dynamic) model = …
model.eval()
data = …

qconfig = ipex.quantization.default_dynamic_qconfig

prepared_model = ipex.quantization.prepare(model, qconfig, example_inputs=data)

converted_model = ipex.quantization.convert(prepared_model)

[Prototype] Post-Training INT8 Quantization (Tuning Recipe): model = …
model.eval()
data = …

qconfig = ipex.quantization.default_static_qconfig

prepared_model = ipex.quantization.prepare(model, qconfig, example_inputs=data, inplace=False)

tuned_model = ipex.quantization.autotune(prepared_model, calibration_data_loader, eval_function, sampling_sizes=[100],


accuracy_criterion={'relative': .01}, tuning_time=0)

convert_model = ipex.quantization.convert(tuned_model)


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4