The analyze function summarize_change()
creates a layout element to summarize the change from baseline or absolute baseline values. The primary analysis variable vars
indicates the numerical change from baseline results.
Required secondary analysis variables value
and baseline_flag
can be supplied to the function via the variables
argument. The value
element should be the name of the analysis value variable, and the baseline_flag
element should be the name of the flag variable that indicates whether or not records contain baseline values. Depending on the baseline flag given, either the absolute baseline values (at baseline) or the change from baseline values (post-baseline) are then summarized.
summarize_change(
lyt,
vars,
variables,
var_labels = vars,
na_str = default_na_str(),
na_rm = TRUE,
nested = TRUE,
show_labels = "default",
table_names = vars,
section_div = NA_character_,
...,
.stats = c("n", "mean_sd", "median", "range"),
.stat_names = NULL,
.formats = c(mean_sd = "xx.xx (xx.xx)", mean_se = "xx.xx (xx.xx)", median = "xx.xx",
range = "xx.xx - xx.xx", mean_pval = "xx.xx"),
.labels = NULL,
.indent_mods = NULL
)
s_change_from_baseline(df, ...)
a_change_from_baseline(
df,
...,
.stats = NULL,
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
Arguments
(PreDataTableLayouts
)
layout that analyses will be added to.
(character
)
variable names for the primary analysis variable to be iterated over.
(named list
of string
)
list of additional analysis variables.
(character
)
variable labels.
(string
)
string used to replace all NA
or empty values in the output.
(flag
)
whether NA
values should be removed from x
prior to analysis.
(flag
)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split. underneath analyses, which is not allowed.
(string
)
label visibility: one of "default", "visible" and "hidden".
(character
)
this can be customized in the case that the same vars
are analyzed multiple times, to avoid warnings from rtables
.
(string
)
string which should be repeated as a section divider after each group defined by this split instruction, or NA_character_
(the default) for no section divider.
additional arguments for the lower level functions.
(character
)
statistics to select for the table.
Options are: 'n', 'sum', 'mean', 'sd', 'se', 'mean_sd', 'mean_se', 'mean_ci', 'mean_sei', 'mean_sdi', 'mean_pval', 'median', 'mad', 'median_ci', 'quantiles', 'iqr', 'range', 'min', 'max', 'median_range', 'cv', 'geom_mean', 'geom_sd', 'geom_mean_sd', 'geom_mean_ci', 'geom_cv', 'median_ci_3d', 'mean_ci_3d', 'geom_mean_ci_3d'
(character
)
names of the statistics that are passed directly to name single statistics (.stats
). This option is visible when producing rtables::as_result_df()
with make_ard = TRUE
.
(named character
or list
)
formats for the statistics. See Details in analyze_vars
for more information on the "auto"
setting.
(named character
)
labels for the statistics (without indent).
(named integer
)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.
(data.frame
)
data set containing all analysis variables.
summarize_change()
returns a layout object suitable for passing to further layouting functions, or to rtables::build_table()
. Adding this function to an rtable
layout will add formatted rows containing the statistics from s_change_from_baseline()
to the table layout.
s_change_from_baseline()
returns the same values returned by s_summary.numeric()
.
a_change_from_baseline()
returns the corresponding list with formatted rtables::CellValue()
.
summarize_change()
: Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper for rtables::analyze()
.
s_change_from_baseline()
: Statistics function that summarizes baseline or post-baseline visits.
a_change_from_baseline()
: Formatted analysis function which is used as afun
in summarize_change()
.
To be used after a split on visits in the layout, such that each data subset only contains either baseline or post-baseline data.
The data in df
must be either all be from baseline or post-baseline visits. Otherwise an error will be thrown.
library(dplyr)
# Fabricate dataset
dta_test <- data.frame(
USUBJID = rep(1:6, each = 3),
AVISIT = rep(paste0("V", 1:3), 6),
ARM = rep(LETTERS[1:3], rep(6, 3)),
AVAL = c(9:1, rep(NA, 9))
) %>%
mutate(ABLFLL = AVISIT == "V1") %>%
group_by(USUBJID) %>%
mutate(
BLVAL = AVAL[ABLFLL],
CHG = AVAL - BLVAL
) %>%
ungroup()
results <- basic_table() %>%
split_cols_by("ARM") %>%
split_rows_by("AVISIT") %>%
summarize_change("CHG", variables = list(value = "AVAL", baseline_flag = "ABLFLL")) %>%
build_table(dta_test)
results
#> A B C
#> ———————————————————————————————————————————————————————————
#> V1
#> n 2 1 0
#> Mean (SD) 7.50 (2.12) 3.00 (<Missing>) <Missing>
#> Median 7.50 3.00 <Missing>
#> Min - Max 6.00 - 9.00 3.00 - 3.00 <Missing>
#> V2
#> n 2 1 0
#> Mean (SD) -1.00 (0.00) -1.00 (<Missing>) <Missing>
#> Median -1.00 -1.00 <Missing>
#> Min - Max -1.00 - -1.00 -1.00 - -1.00 <Missing>
#> V3
#> n 2 1 0
#> Mean (SD) -2.00 (0.00) -2.00 (<Missing>) <Missing>
#> Median -2.00 -2.00 <Missing>
#> Min - Max -2.00 - -2.00 -2.00 - -2.00 <Missing>
On this page
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4