A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://insightsengineering.github.io/tern/latest-tag/reference/fit_logistic.html below:

Fit for logistic regression — fit_logistic • tern

Fit a (conditional) logistic regression model.

Usage
fit_logistic(
  data,
  variables = list(response = "Response", arm = "ARMCD", covariates = NULL, interaction =
    NULL, strata = NULL),
  response_definition = "response"
)
Arguments
data

(data.frame)
the data frame on which the model was fit.

variables

(named list of string)
list of additional analysis variables.

response_definition

(string)
the definition of what an event is in terms of response. This will be used when fitting the (conditional) logistic regression model on the left hand side of the formula.

Value

A fitted logistic regression model.

Model Specification

The variables list needs to include the following elements:

Examples
library(dplyr)

adrs_f <- tern_ex_adrs %>%
  filter(PARAMCD == "BESRSPI") %>%
  filter(RACE %in% c("ASIAN", "WHITE", "BLACK OR AFRICAN AMERICAN")) %>%
  mutate(
    Response = case_when(AVALC %in% c("PR", "CR") ~ 1, TRUE ~ 0),
    RACE = factor(RACE),
    SEX = factor(SEX)
  )
formatters::var_labels(adrs_f) <- c(formatters::var_labels(tern_ex_adrs), Response = "Response")
mod1 <- fit_logistic(
  data = adrs_f,
  variables = list(
    response = "Response",
    arm = "ARMCD",
    covariates = c("AGE", "RACE")
  )
)
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
mod2 <- fit_logistic(
  data = adrs_f,
  variables = list(
    response = "Response",
    arm = "ARMCD",
    covariates = c("AGE", "RACE"),
    interaction = "AGE"
  )
)
#> Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4