Layouts are used to describe a table pre-data. build_table
is used to create a table using a layout and a dataset.
build_table(
lyt,
df,
alt_counts_df = NULL,
col_counts = NULL,
col_total = if (is.null(alt_counts_df)) nrow(df) else nrow(alt_counts_df),
topleft = NULL,
hsep = default_hsep(),
...
)
Arguments
(PreDataTableLayouts
)
layout object pre-data used for tabulation.
(data.frame
or tibble
)
dataset.
(data.frame
or tibble
)
alternative full dataset the rtables framework will use only when calculating column counts.
(numeric
or NULL
)
if non-NULL
, column counts for leaf-columns only which override those calculated automatically during tabulation. Must specify "counts" for all leaf-columns if non-NULL
. NA
elements will be replaced with the automatically calculated counts. Turns on display of leaf-column counts when non-NULL
.
(integer(1)
)
the total observations across all columns. Defaults to nrow(df)
.
(character
)
override values for the "top left" material to be displayed during printing.
(string
)
set of characters to be repeated as the separator between the header and body of the table when rendered as text. Defaults to a connected horizontal line (unicode 2014) in locals that use a UTF charset, and to -
elsewhere (with a once per session warning). See formatters::set_default_hsep()
for further information.
ignored.
A TableTree
or ElementaryTable
object representing the table created by performing the tabulations declared in lyt
to the data df
.
When alt_counts_df
is specified, column counts are calculated by applying the exact column subsetting expressions determined when applying column splitting to the main data (df
) to alt_counts_df
and counting the observations in each resulting subset.
In particular, this means that in the case of splitting based on cuts of the data, any dynamic cuts will have been calculated based on df
and simply re-used for the count calculation.
When overriding the column counts or totals care must be taken that, e.g., length()
or nrow()
are not called within tabulation functions, because those will NOT give the overridden counts. Writing/using tabulation functions which accept .N_col
and .N_total
or do not rely on column counts at all (even implicitly) is the only way to ensure overridden counts are fully respected.
lyt <- basic_table() %>%
split_cols_by("Species") %>%
analyze("Sepal.Length", afun = function(x) {
list(
"mean (sd)" = rcell(c(mean(x), sd(x)), format = "xx.xx (xx.xx)"),
"range" = diff(range(x))
)
})
lyt
#> A Pre-data Table Layout
#>
#> Column-Split Structure:
#> Species (lvls)
#>
#> Row-Split Structure:
#> Sepal.Length (** analysis **)
#>
tbl <- build_table(lyt, iris)
tbl
#> setosa versicolor virginica
#> ———————————————————————————————————————————————————
#> mean (sd) 5.01 (0.35) 5.94 (0.52) 6.59 (0.64)
#> range 1.5 2.1 3
# analyze multiple variables
lyt2 <- basic_table() %>%
split_cols_by("Species") %>%
analyze(c("Sepal.Length", "Petal.Width"), afun = function(x) {
list(
"mean (sd)" = rcell(c(mean(x), sd(x)), format = "xx.xx (xx.xx)"),
"range" = diff(range(x))
)
})
tbl2 <- build_table(lyt2, iris)
tbl2
#> setosa versicolor virginica
#> ——————————————————————————————————————————————————————
#> Sepal.Length
#> mean (sd) 5.01 (0.35) 5.94 (0.52) 6.59 (0.64)
#> range 1.5 2.1 3
#> Petal.Width
#> mean (sd) 0.25 (0.11) 1.33 (0.20) 2.03 (0.27)
#> range 0.5 0.8 1.1
# an example more relevant for clinical trials with column counts
lyt3 <- basic_table(show_colcounts = TRUE) %>%
split_cols_by("ARM") %>%
analyze("AGE", afun = function(x) {
setNames(as.list(fivenum(x)), c(
"minimum", "lower-hinge", "median",
"upper-hinge", "maximum"
))
})
tbl3 <- build_table(lyt3, DM)
tbl3
#> A: Drug X B: Placebo C: Combination
#> (N=121) (N=106) (N=129)
#> —————————————————————————————————————————————————————
#> minimum 20 21 22
#> lower-hinge 29 29 30
#> median 33 32 33
#> upper-hinge 39 37 38
#> maximum 60 55 53
tbl4 <- build_table(lyt3, subset(DM, AGE > 40))
tbl4
#> A: Drug X B: Placebo C: Combination
#> (N=25) (N=10) (N=21)
#> —————————————————————————————————————————————————————
#> minimum 41 41 41
#> lower-hinge 43 42 43
#> median 45 45.5 45
#> upper-hinge 49 48 47
#> maximum 60 55 53
# with column counts calculated based on different data
miniDM <- DM[sample(1:NROW(DM), 100), ]
tbl5 <- build_table(lyt3, DM, alt_counts_df = miniDM)
tbl5
#> A: Drug X B: Placebo C: Combination
#> (N=37) (N=30) (N=33)
#> —————————————————————————————————————————————————————
#> minimum 20 21 22
#> lower-hinge 29 29 30
#> median 33 32 33
#> upper-hinge 39 37 38
#> maximum 60 55 53
tbl6 <- build_table(lyt3, DM, col_counts = 1:3)
tbl6
#> A: Drug X B: Placebo C: Combination
#> (N=1) (N=2) (N=3)
#> —————————————————————————————————————————————————————
#> minimum 20 21 22
#> lower-hinge 29 29 30
#> median 33 32 33
#> upper-hinge 39 37 38
#> maximum 60 55 53
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4