Generate rows analyzing different variables across columns
Usageanalyze_colvars(
lyt,
afun,
parent_name = get_acolvar_name(lyt),
format = NULL,
na_str = NA_character_,
nested = TRUE,
extra_args = list(),
indent_mod = 0L,
inclNAs = FALSE
)
Arguments
(PreDataTableLayouts
)
layout object pre-data used for tabulation.
(function
or list
)
function(s) to be used to calculate the values in each column. The list will be repped out as needed and matched by position with the columns during tabulation. This functions accepts the same parameters as analyze()
like afun
and format
. For further information see additional_fun_params.
(character(1)
)
Name to assign to the table corresponding to the split or group of sibling analyses, for split_rows_by*
and analyze*
when analyzing more than one variable, respectively. Ignored when analyzing a single variable.
(string
, function
, or list
)
format associated with this split. Formats can be declared via strings ("xx.x"
) or function. In cases such as analyze
calls, they can be character vectors or lists of functions. See formatters::list_valid_format_labels()
for a list of all available format strings.
(string
)
string that should be displayed when the value of x
is missing. Defaults to "NA"
.
(logical
)
whether this layout instruction should be applied within the existing layout structure if possible (TRUE
, the default) or as a new top-level element (FALSE
). Ignored if it would nest a split underneath analyses, which is not allowed.
(list
)
extra arguments to be passed to the tabulation function. Element position in the list corresponds to the children of this split. Named elements in the child-specific lists are ignored if they do not match a formal argument of the tabulation function.
(numeric
)
modifier for the default indent position for the structure created by this function (subtable, content table, or row) and all of that structure's children. Defaults to 0, which corresponds to the unmodified default behavior.
(logical
)
whether NA observations in the var
variable(s) should be included when performing the analysis. Defaults to FALSE
.
A PreDataTableLayouts
object suitable for passing to further layouting functions, and to build_table()
.
library(dplyr)
ANL <- DM %>% mutate(value = rnorm(n()), pctdiff = runif(n()))
## toy example where we take the mean of the first variable and the
## count of >.5 for the second.
colfuns <- list(
function(x) rcell(mean(x), format = "xx.x"),
function(x) rcell(sum(x > .5), format = "xx")
)
lyt <- basic_table() %>%
split_cols_by("ARM") %>%
split_cols_by_multivar(c("value", "pctdiff")) %>%
split_rows_by("RACE",
split_label = "ethnicity",
split_fun = drop_split_levels
) %>%
summarize_row_groups() %>%
analyze_colvars(afun = colfuns)
lyt
#> A Pre-data Table Layout
#>
#> Column-Split Structure:
#> ARM (lvls) -> value:pctdiff (vars)
#>
#> Row-Split Structure:
#> RACE (lvls) -> NA (** col-var analysis **)
#>
tbl <- build_table(lyt, ANL)
tbl
#> A: Drug X B: Placebo C: Combination
#> value pctdiff value pctdiff value pctdiff
#> ———————————————————————————————————————————————————————————————————————————————————————————————————————
#> ASIAN 79 (65.3%) 79 (65.3%) 68 (64.2%) 68 (64.2%) 84 (65.1%) 84 (65.1%)
#> 0.0 32 0.2 28 0.1 42
#> BLACK OR AFRICAN AMERICAN 28 (23.1%) 28 (23.1%) 24 (22.6%) 24 (22.6%) 27 (20.9%) 27 (20.9%)
#> -0.0 15 0.1 9 0.1 15
#> WHITE 14 (11.6%) 14 (11.6%) 14 (13.2%) 14 (13.2%) 18 (14.0%) 18 (14.0%)
#> -0.2 10 0.3 7 -0.3 12
lyt2 <- basic_table() %>%
split_cols_by("ARM") %>%
split_cols_by_multivar(c("value", "pctdiff"),
varlabels = c("Measurement", "Pct Diff")
) %>%
split_rows_by("RACE",
split_label = "ethnicity",
split_fun = drop_split_levels
) %>%
summarize_row_groups() %>%
analyze_colvars(afun = mean, format = "xx.xx")
tbl2 <- build_table(lyt2, ANL)
tbl2
#> A: Drug X B: Placebo C: Combination
#> Measurement Pct Diff Measurement Pct Diff Measurement Pct Diff
#> ——————————————————————————————————————————————————————————————————————————————————————————————————————————
#> ASIAN 79 (65.3%) 79 (65.3%) 68 (64.2%) 68 (64.2%) 84 (65.1%) 84 (65.1%)
#> mean 0.04 0.45 0.19 0.44 0.14 0.51
#> BLACK OR AFRICAN AMERICAN 28 (23.1%) 28 (23.1%) 24 (22.6%) 24 (22.6%) 27 (20.9%) 27 (20.9%)
#> mean -0.04 0.53 0.13 0.46 0.06 0.57
#> WHITE 14 (11.6%) 14 (11.6%) 14 (13.2%) 14 (13.2%) 18 (14.0%) 18 (14.0%)
#> mean -0.19 0.61 0.33 0.48 -0.27 0.55
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4