A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://huggingface.com/skt/A.X-4.0 below:

Website Navigation


skt/A.X-4.0 Β· Hugging Face

A.X 4.0

πŸ€— Models | πŸ’¬ Chat | πŸ“¬ APIs (FREE!) | πŸ–₯️ Github

A.X 4.0 Family Highlights

SK Telecom released A.X 4.0 (pronounced "A dot X"), a large language model (LLM) optimized for Korean-language understanding and enterprise deployment, on July 03, 2025. Built on the open-source Qwen2.5 model, A.X 4.0 has been further trained with large-scale Korean datasets to deliver outstanding performance in real-world business environments.

Performance Model Performance Benchmarks A.X 4.0 Qwen3-235B-A22B
(w/o reasoning) Qwen2.5-72B GPT-4o Knowledge KMMLU 78.32 73.64 66.44 72.51 CLIcK 83.51 74.55 72.59 80.22 KoBALT 47.30 41.57 37.00 44.00 MMLU 86.62 87.37 85.70 88.70 General Ko-MT-Bench 86.69 88.00 82.69 88.44 MT-Bench 83.25 86.56 93.50 88.19 LiveBench2024.11 52.30 64.50 54.20 52.19 Instruction Following Ko-IFEval 77.96 77.53 77.07 75.38 IFEval 86.05 85.77 86.54 83.86 Math HRM8K 48.55 54.52 46.37 43.27 MATH 74.28 72.72 77.00 72.38 Code HumanEval+ 79.27 79.27 81.71 86.00 MBPP+ 73.28 70.11 75.66 75.10 LiveCodeBench2024.10~2025.04 26.07 33.09 27.58 29.30 Long Context LongBench<128K 56.70 49.40 45.60 47.50 Tool-use FunctionChatBench 85.96 82.43 88.30 95.70 Lightweight Model Performance Benchmarks A.X 4.0 Light Qwen3-8B
(w/o reasoning) Qwen2.5-7B EXAONE-3.5-7.8B Kanana-1.5-8B Knowledge KMMLU 64.15 63.53 49.56 53.76 48.28 CLIcK 68.05 62.71 60.56 64.30 61.30 KoBALT 30.29 26.57 21.57 21.71 23.14 MMLU 75.43 82.89 75.40 72.20 68.82 General Ko-MT-Bench 79.50 64.06 61.31 81.06 76.30 MT-Bench 81.56 65.69 79.37 83.50 77.60 LiveBench 37.10 50.20 37.00 40.20 29.40 Instruction Following Ko-IFEval 72.99 73.39 60.73 65.01 69.96 IFEval 84.68 85.38 76.73 82.61 80.11 Math HRM8K 40.12 52.50 35.13 31.88 30.87 MATH 68.88 71.48 65.58 63.20 59.28 Code HumanEval+ 75.61 77.44 74.39 76.83 76.83 MBPP+ 67.20 62.17 68.50 64.29 67.99 LiveCodeBench 18.03 23.93 16.62 17.98 16.52 πŸš€ Quickstart with HuggingFace Transformers
pip install transformers>=4.46.0
Example Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "skt/A.X-4.0"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "당신은 μ‚¬μš©μžκ°€ μ œκ³΅ν•˜λŠ” μ˜μ–΄ λ¬Έμž₯듀을 ν•œκ΅­μ–΄λ‘œ λ²ˆμ—­ν•˜λŠ” AI μ „λ¬Έκ°€μž…λ‹ˆλ‹€."},
    {"role": "user", "content": "The first human went into space and orbited the Earth on April 12, 1961."},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

with torch.no_grad():
    output = model.generate(
        input_ids,
        max_new_tokens=128,
        do_sample=False,
    )

len_input_prompt = len(input_ids[0])
response = tokenizer.decode(output[0][len_input_prompt:], skip_special_tokens=True)
print(response)


with vLLM
pip install vllm>=v0.6.4.post1

VLLM_OPTION="--enable-auto-tool-choice --tool-call-parser hermes"
vllm serve skt/A.X-4.0 $VLLM_OPTION
Example Usage
from openai import OpenAI

def call(messages, model):
    completion = client.chat.completions.create(
        model=model,
        messages=messages,
    )
    print(completion.choices[0].message)

client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="api_key"
)
model = "skt/A.X-4.0"
messages = [{"role": "user", "content": "에어컨 여름철 적정 μ˜¨λ„λŠ”? ν•œμ€„λ‘œ λ‹΅λ³€ν•΄μ€˜"}]
call(messages, model)



messages = [{"role": "user", "content": "What is the appropriate temperature for air conditioning in summer? Response in a single sentence."}]
call(messages, model)


Examples for tool-use
from openai import OpenAI


def call(messages, model):
    completion = client.chat.completions.create(
        model=model,
        messages=messages,
        tools=tools
    )
    print(completion.choices[0].message)


client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="api_key"
)
model = "skt/A.X-4.0"

calculate_discount = {
    "type": "function",
    "function": {
        "name": "calculate_discount",
        "description": "원가격과 ν• μΈμœ¨(νΌμ„ΌνŠΈ λ‹¨μœ„)을 μž…λ ₯λ°›μ•„ ν• μΈλœ κ°€κ²©μ„κ³„μ‚°ν•œλ‹€.",
        "parameters": {
            "type": "object",
            "properties": {
                "original_price": {
                    "type": "number",
                    "description": "μƒν’ˆμ˜ μ›λž˜ 가격"
                },
                "discount_percentage": {
                    "type": "number",
                    "description": "μ μš©ν•  ν• μΈμœ¨(예: 20% ν• μΈμ˜ 경우 20을 μž…λ ₯)"
                }
            },
            "required": ["original_price", "discount_percentage"]
        }
    }
}
get_exchange_rate = {
    "type": "function",
    "function": {
        "name": "get_exchange_rate",
        "description": "두 톡화 κ°„μ˜ ν™˜μœ¨μ„ κ°€μ Έμ˜¨λ‹€.",
        "parameters": {
            "type": "object",
            "properties": {
                "base_currency": {
                    "type": "string",
                    "description": "The currency to convert from."
                },
                "target_currency": {
                    "type": "string",
                    "description": "The currency to convert to."
                }
            },
            "required": ["base_currency", "target_currency"]
        }
    }
}
tools = [calculate_discount, get_exchange_rate]


messages = [{"role": "user", "content": "μš°λ¦¬κ°€ 뭘 μ‚¬μ•Όλ˜λŠ”λ° μ›λž˜ 57600원인데 직원할인 받을 수 μžˆκ±°λ“ ? 할인가쒀 κ³„μ‚°ν•΄μ€˜"}]
call(messages, model)





messages = [
    {"role": "user", "content": "μš°λ¦¬κ°€ 뭘 μ‚¬μ•Όλ˜λŠ”λ° μ›λž˜ 57600원인데 직원할인 받을 수 μžˆκ±°λ“ ? 할인가쒀 κ³„μ‚°ν•΄μ€˜"},
    {"role": "assistant", "content": "직원 할인을 λͺ‡ νΌμ„ΌνŠΈ 받을 수 μžˆλŠ”μ§€ μ•Œλ €μ£Όμ‹œκ² μ–΄μš”?"},
    {"role": "user", "content": "15% 할인 받을 수 μžˆμ–΄."},
]
call(messages, model)





messages = [
    {"role": "user", "content": "μš°λ¦¬κ°€ 뭘 μ‚¬μ•Όλ˜λŠ”λ° μ›λž˜ 57600원인데 직원할인 받을 수 μžˆκ±°λ“ ? 할인가쒀 κ³„μ‚°ν•΄μ€˜"},
    {"role": "assistant", "content": "직원 할인을 λͺ‡ νΌμ„ΌνŠΈ 받을 수 μžˆλŠ”μ§€ μ•Œλ €μ£Όμ‹œκ² μ–΄μš”?"},
    {"role": "user", "content": "15% 할인 받을 수 μžˆμ–΄."},
    {"role": "tool", "tool_call_id": "random_id", "name": "calculate_discount", "content": "{\"original_price\": 57600, \"discount_percentage\": 15, \"discounted_price\": 48960.0}"}
]
call(messages, model)


Citation
@article{SKTAdotX4,
  title={A.X 4.0},
  author={SKT AI Model Lab},
  year={2025},
  url={https://huggingface.co/skt/A.X-4.0}
}
Contact

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4