A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://huggingface.com/nanonets/Nanonets-OCR-s below:

Website Navigation


nanonets/Nanonets-OCR-s ยท Hugging Face

Nanonets-OCR-s by Nanonets is a powerful, state-of-the-art image-to-markdown OCR model that goes far beyond traditional text extraction. It transforms documents into structured markdown with intelligent content recognition and semantic tagging, making it ideal for downstream processing by Large Language Models (LLMs).

Nanonets-OCR-s is packed with features designed to handle complex documents with ease:

๐Ÿ“ข Read the full announcement | ๐Ÿค— Hugging Face Space Demo

Usage Using transformers
from PIL import Image
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText

model_path = "nanonets/Nanonets-OCR-s"

model = AutoModelForImageTextToText.from_pretrained(
    model_path, 
    torch_dtype="auto", 
    device_map="auto", 
    attn_implementation="flash_attention_2"
)
model.eval()

tokenizer = AutoTokenizer.from_pretrained(model_path)
processor = AutoProcessor.from_pretrained(model_path)


def ocr_page_with_nanonets_s(image_path, model, processor, max_new_tokens=4096):
    prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using โ˜ and โ˜‘ for check boxes."""
    image = Image.open(image_path)
    messages = [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": [
            {"type": "image", "image": f"file://{image_path}"},
            {"type": "text", "text": prompt},
        ]},
    ]
    text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
    inputs = inputs.to(model.device)
    
    output_ids = model.generate(**inputs, max_new_tokens=max_new_tokens, do_sample=False)
    generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs.input_ids, output_ids)]
    
    output_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
    return output_text[0]

image_path = "/path/to/your/document.jpg"
result = ocr_page_with_nanonets_s(image_path, model, processor, max_new_tokens=15000)
print(result)
Using vLLM
  1. Start the vLLM server.
vllm serve nanonets/Nanonets-OCR-s
  1. Predict with the model
from openai import OpenAI
import base64

client = OpenAI(api_key="123", base_url="http://localhost:8000/v1")

model = "nanonets/Nanonets-OCR-s"

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")

def ocr_page_with_nanonets_s(img_base64):
    response = client.chat.completions.create(
        model=model,
        messages=[
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/png;base64,{img_base64}"},
                    },
                    {
                        "type": "text",
                        "text": "Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using โ˜ and โ˜‘ for check boxes.",
                    },
                ],
            }
        ],
        temperature=0.0,
        max_tokens=15000
    )
    return response.choices[0].message.content

test_img_path = "/path/to/your/document.jpg"
img_base64 = encode_image(test_img_path)
print(ocr_page_with_nanonets_s(img_base64))
Using docext
pip install docext
python -m docext.app.app --model_name hosted_vllm/nanonets/Nanonets-OCR-s

Checkout GitHub for more details.

BibTex
@misc{Nanonets-OCR-S,
  title={Nanonets-OCR-S: A model for transforming documents into structured markdown with intelligent content recognition and semantic tagging},
  author={Souvik Mandal and Ashish Talewar and Paras Ahuja and Prathamesh Juvatkar},
  year={2025},
}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4