The VideoMAE model was proposed in VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training by Zhan Tong, Yibing Song, Jue Wang, Limin Wang. VideoMAE extends masked auto encoders (MAE) to video, claiming state-of-the-art performance on several video classification benchmarks.
The abstract from the paper is the following:
Pre-training video transformers on extra large-scale datasets is generally required to achieve premier performance on relatively small datasets. In this paper, we show that video masked autoencoders (VideoMAE) are data-efficient learners for self-supervised video pre-training (SSVP). We are inspired by the recent ImageMAE and propose customized video tube masking and reconstruction. These simple designs turn out to be effective for overcoming information leakage caused by the temporal correlation during video reconstruction. We obtain three important findings on SSVP: (1) An extremely high proportion of masking ratio (i.e., 90% to 95%) still yields favorable performance of VideoMAE. The temporally redundant video content enables higher masking ratio than that of images. (2) VideoMAE achieves impressive results on very small datasets (i.e., around 3k-4k videos) without using any extra data. This is partially ascribed to the challenging task of video reconstruction to enforce high-level structure learning. (3) VideoMAE shows that data quality is more important than data quantity for SSVP. Domain shift between pre-training and target datasets are important issues in SSVP. Notably, our VideoMAE with the vanilla ViT backbone can achieve 83.9% on Kinects-400, 75.3% on Something-Something V2, 90.8% on UCF101, and 61.1% on HMDB51 without using any extra data.
VideoMAE pre-training. Taken from the original paper.This model was contributed by nielsr. The original code can be found here.
Using Scaled Dot Product Attention (SDPA)PyTorch includes a native scaled dot-product attention (SDPA) operator as part of torch.nn.functional
. This function encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the official documentation or the GPU Inference page for more information.
SDPA is used by default for torch>=2.1.1
when an implementation is available, but you may also set attn_implementation="sdpa"
in from_pretrained()
to explicitly request SDPA to be used.
from transformers import VideoMAEForVideoClassification model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics", attn_implementation="sdpa", torch_dtype=torch.float16) ...
For the best speedups, we recommend loading the model in half-precision (e.g. torch.float16
or torch.bfloat16
).
On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with float32
and MCG-NJU/videomae-base-finetuned-kinetics
model, we saw the following speedups during inference.
A list of official Hugging Face and community (indicated by π) resources to help you get started with VideoMAE. If youβre interested in submitting a resource to be included here, please feel free to open a Pull Request and weβll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
Video classification
( image_size = 224 patch_size = 16 num_channels = 3 num_frames = 16 tubelet_size = 2 hidden_size = 768 num_hidden_layers = 12 num_attention_heads = 12 intermediate_size = 3072 hidden_act = 'gelu' hidden_dropout_prob = 0.0 attention_probs_dropout_prob = 0.0 initializer_range = 0.02 layer_norm_eps = 1e-12 qkv_bias = True use_mean_pooling = True decoder_num_attention_heads = 6 decoder_hidden_size = 384 decoder_num_hidden_layers = 4 decoder_intermediate_size = 1536 norm_pix_loss = True **kwargs )
Parameters
int
, optional, defaults to 224) β The size (resolution) of each image. int
, optional, defaults to 16) β The size (resolution) of each patch. int
, optional, defaults to 3) β The number of input channels. int
, optional, defaults to 16) β The number of frames in each video. int
, optional, defaults to 2) β The number of tubelets. int
, optional, defaults to 768) β Dimensionality of the encoder layers and the pooler layer. int
, optional, defaults to 12) β Number of hidden layers in the Transformer encoder. int
, optional, defaults to 12) β Number of attention heads for each attention layer in the Transformer encoder. int
, optional, defaults to 3072) β Dimensionality of the βintermediateβ (i.e., feed-forward) layer in the Transformer encoder. str
or function
, optional, defaults to "gelu"
) β The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu"
, "relu"
, "selu"
and "gelu_new"
are supported. float
, optional, defaults to 0.0) β The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. float
, optional, defaults to 0.0) β The dropout ratio for the attention probabilities. float
, optional, defaults to 0.02) β The standard deviation of the truncated_normal_initializer for initializing all weight matrices. float
, optional, defaults to 1e-12) β The epsilon used by the layer normalization layers. bool
, optional, defaults to True
) β Whether to add a bias to the queries, keys and values. bool
, optional, defaults to True
) β Whether to mean pool the final hidden states instead of using the final hidden state of the [CLS] token. int
, optional, defaults to 6) β Number of attention heads for each attention layer in the decoder. int
, optional, defaults to 384) β Dimensionality of the decoder. int
, optional, defaults to 4) β Number of hidden layers in the decoder. int
, optional, defaults to 1536) β Dimensionality of the βintermediateβ (i.e., feed-forward) layer in the decoder. bool
, optional, defaults to True
) β Whether to normalize the target patch pixels. This is the configuration class to store the configuration of a VideoMAEModel. It is used to instantiate a VideoMAE model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the VideoMAE MCG-NJU/videomae-base architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import VideoMAEConfig, VideoMAEModel >>> >>> configuration = VideoMAEConfig() >>> >>> model = VideoMAEModel(configuration) >>> >>> configuration = model.configVideoMAEFeatureExtractor
Preprocess an image or a batch of images.
VideoMAEImageProcessor class transformers.VideoMAEImageProcessor < source >( do_resize: bool = True size: typing.Optional[dict[str, int]] = None resample: Resampling = <Resampling.BILINEAR: 2> do_center_crop: bool = True crop_size: typing.Optional[dict[str, int]] = None do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None **kwargs )
Parameters
bool
, optional, defaults to True
) β Whether to resize the imageβs (height, width) dimensions to the specified size
. Can be overridden by the do_resize
parameter in the preprocess
method. dict[str, int]
optional, defaults to {"shortest_edge" -- 224}
): Size of the output image after resizing. The shortest edge of the image will be resized to size["shortest_edge"]
while maintaining the aspect ratio of the original image. Can be overridden by size
in the preprocess
method. PILImageResampling
, optional, defaults to Resampling.BILINEAR
) β Resampling filter to use if resizing the image. Can be overridden by the resample
parameter in the preprocess
method. bool
, optional, defaults to True
) β Whether to center crop the image to the specified crop_size
. Can be overridden by the do_center_crop
parameter in the preprocess
method. dict[str, int]
, optional, defaults to {"height" -- 224, "width": 224}
): Size of the image after applying the center crop. Can be overridden by the crop_size
parameter in the preprocess
method. bool
, optional, defaults to True
) β Whether to rescale the image by the specified scale rescale_factor
. Can be overridden by the do_rescale
parameter in the preprocess
method. int
or float
, optional, defaults to 1/255
) β Defines the scale factor to use if rescaling the image. Can be overridden by the rescale_factor
parameter in the preprocess
method. bool
, optional, defaults to True
) β Whether to normalize the image. Can be overridden by the do_normalize
parameter in the preprocess
method. float
or list[float]
, optional, defaults to IMAGENET_STANDARD_MEAN
) β Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean
parameter in the preprocess
method. float
or list[float]
, optional, defaults to IMAGENET_STANDARD_STD
) β Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std
parameter in the preprocess
method. Constructs a VideoMAE image processor.
preprocess < source >( videos: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] do_resize: typing.Optional[bool] = None size: typing.Optional[dict[str, int]] = None resample: Resampling = None do_center_crop: typing.Optional[bool] = None crop_size: typing.Optional[dict[str, int]] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, list[float], NoneType] = None image_std: typing.Union[float, list[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: ChannelDimension = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[transformers.image_utils.ChannelDimension, str, NoneType] = None )
Parameters
ImageInput
) β Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False
. bool
, optional, defaults to self.do_resize
) β Whether to resize the image. dict[str, int]
, optional, defaults to self.size
) β Size of the image after applying resize. PILImageResampling
, optional, defaults to self.resample
) β Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling
, Only has an effect if do_resize
is set to True
. bool
, optional, defaults to self.do_centre_crop
) β Whether to centre crop the image. dict[str, int]
, optional, defaults to self.crop_size
) β Size of the image after applying the centre crop. bool
, optional, defaults to self.do_rescale
) β Whether to rescale the image values between [0 - 1]. float
, optional, defaults to self.rescale_factor
) β Rescale factor to rescale the image by if do_rescale
is set to True
. bool
, optional, defaults to self.do_normalize
) β Whether to normalize the image. float
or list[float]
, optional, defaults to self.image_mean
) β Image mean. float
or list[float]
, optional, defaults to self.image_std
) β Image standard deviation. str
or TensorType
, optional) β The type of tensors to return. Can be one of:
np.ndarray
.TensorType.TENSORFLOW
or 'tf'
: Return a batch of type tf.Tensor
.TensorType.PYTORCH
or 'pt'
: Return a batch of type torch.Tensor
.TensorType.NUMPY
or 'np'
: Return a batch of type np.ndarray
.TensorType.JAX
or 'jax'
: Return a batch of type jax.numpy.ndarray
.ChannelDimension
or str
, optional, defaults to ChannelDimension.FIRST
) β The channel dimension format for the output image. Can be one of:
ChannelDimension.FIRST
: image in (num_channels, height, width) format.ChannelDimension.LAST
: image in (height, width, num_channels) format.ChannelDimension
or str
, optional) β The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
"channels_first"
or ChannelDimension.FIRST
: image in (num_channels, height, width) format."channels_last"
or ChannelDimension.LAST
: image in (height, width, num_channels) format."none"
or ChannelDimension.NONE
: image in (height, width) format.Preprocess an image or batch of images.
VideoMAEModel class transformers.VideoMAEModel < source >( config )
Parameters
The bare Videomae Model outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward < source >( pixel_values: FloatTensor bool_masked_pos: typing.Optional[torch.BoolTensor] = None head_mask: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.BaseModelOutput or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_channels, image_size, image_size)
) β The tensors corresponding to the input images. Pixel values can be obtained using {image_processor_class}
. See {image_processor_class}.__call__
for details ({processor_class}
uses {image_processor_class}
for processing images). torch.BoolTensor
of shape (batch_size, sequence_length)
, optional) β Boolean masked positions. Indicates which patches are masked (1) and which arenβt (0). Each video in the batch must have the same number of masked patches. If None
, then all patches are considered. Sequence length is (num_frames // tubelet_size) * (image_size // patch_size) ** 2
. torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) β Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple. A transformers.modeling_outputs.BaseModelOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (VideoMAEConfig) and inputs.
last_hidden_state (torch.FloatTensor
of shape (batch_size, sequence_length, hidden_size)
) β Sequence of hidden-states at the output of the last layer of the model.
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The VideoMAEModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
>>> import av >>> import numpy as np >>> from transformers import AutoImageProcessor, VideoMAEModel >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`list[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`list[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") >>> model = VideoMAEModel.from_pretrained("MCG-NJU/videomae-base") >>> >>> inputs = image_processor(list(video), return_tensors="pt") >>> >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 1568, 768]VideoMAEForPreTraining
VideoMAEForPreTraining
includes the decoder on top for self-supervised pre-training.
( config )
Parameters
The VideoMAE Model transformer with the decoder on top for self-supervised pre-training.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward < source >( pixel_values: FloatTensor bool_masked_pos: BoolTensor head_mask: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.models.videomae.modeling_videomae.VideoMAEForPreTrainingOutput
or tuple(torch.FloatTensor)
Parameters
torch.FloatTensor
of shape (batch_size, num_channels, image_size, image_size)
) β The tensors corresponding to the input images. Pixel values can be obtained using {image_processor_class}
. See {image_processor_class}.__call__
for details ({processor_class}
uses {image_processor_class}
for processing images). torch.BoolTensor
of shape (batch_size, sequence_length)
) β Boolean masked positions. Indicates which patches are masked (1) and which arenβt (0). Each video in the batch must have the same number of masked patches. Sequence length is (num_frames // tubelet_size) * (image_size // patch_size) ** 2
. torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) β Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple. Returns
transformers.models.videomae.modeling_videomae.VideoMAEForPreTrainingOutput
or tuple(torch.FloatTensor)
A transformers.models.videomae.modeling_videomae.VideoMAEForPreTrainingOutput
or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (VideoMAEConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
) β Pixel reconstruction loss.
logits (torch.FloatTensor
of shape (batch_size, patch_size ** 2 * num_channels)
) β Pixel reconstruction logits.
hidden_states (tuple[torch.FloatTensor]
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size)
.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (tuple[torch.FloatTensor]
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The VideoMAEForPreTraining forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
>>> from transformers import AutoImageProcessor, VideoMAEForPreTraining >>> import numpy as np >>> import torch >>> num_frames = 16 >>> video = list(np.random.randint(0, 256, (num_frames, 3, 224, 224))) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base") >>> model = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base") >>> pixel_values = image_processor(video, return_tensors="pt").pixel_values >>> num_patches_per_frame = (model.config.image_size // model.config.patch_size) ** 2 >>> seq_length = (num_frames // model.config.tubelet_size) * num_patches_per_frame >>> bool_masked_pos = torch.randint(0, 2, (1, seq_length)).bool() >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss = outputs.lossVideoMAEForVideoClassification class transformers.VideoMAEForVideoClassification < source >
( config )
Parameters
VideoMAE Model transformer with a video classification head on top (a linear layer on top of the average pooled hidden states of all tokens) e.g. for ImageNet.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward < source >( pixel_values: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)
Parameters
torch.Tensor
of shape (batch_size, num_channels, image_size, image_size)
, optional) β The tensors corresponding to the input images. Pixel values can be obtained using {image_processor_class}
. See {image_processor_class}.__call__
for details ({processor_class}
uses {image_processor_class}
for processing images). torch.Tensor
of shape (num_heads,)
or (num_layers, num_heads)
, optional) β Mask to nullify selected heads of the self-attention modules. Mask values selected in [0, 1]
:
torch.LongTensor
of shape (batch_size,)
, optional) β Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]
. If config.num_labels == 1
a regression loss is computed (Mean-Square loss), If config.num_labels > 1
a classification loss is computed (Cross-Entropy). bool
, optional) β Whether or not to return the attentions tensors of all attention layers. See attentions
under returned tensors for more detail. bool
, optional) β Whether or not to return the hidden states of all layers. See hidden_states
under returned tensors for more detail. bool
, optional) β Whether or not to return a ModelOutput instead of a plain tuple. A transformers.modeling_outputs.ImageClassifierOutput or a tuple of torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the configuration (VideoMAEConfig) and inputs.
loss (torch.FloatTensor
of shape (1,)
, optional, returned when labels
is provided) β Classification (or regression if config.num_labels==1) loss.
logits (torch.FloatTensor
of shape (batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (tuple(torch.FloatTensor)
, optional, returned when output_hidden_states=True
is passed or when config.output_hidden_states=True
) β Tuple of torch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size)
. Hidden-states (also called feature maps) of the model at the output of each stage.
attentions (tuple(torch.FloatTensor)
, optional, returned when output_attentions=True
is passed or when config.output_attentions=True
) β Tuple of torch.FloatTensor
(one for each layer) of shape (batch_size, num_heads, patch_size, sequence_length)
.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The VideoMAEForVideoClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.
Examples:
>>> import av >>> import torch >>> import numpy as np >>> from transformers import AutoImageProcessor, VideoMAEForVideoClassification >>> from huggingface_hub import hf_hub_download >>> np.random.seed(0) >>> def read_video_pyav(container, indices): ... ''' ... Decode the video with PyAV decoder. ... Args: ... container (`av.container.input.InputContainer`): PyAV container. ... indices (`list[int]`): List of frame indices to decode. ... Returns: ... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3). ... ''' ... frames = [] ... container.seek(0) ... start_index = indices[0] ... end_index = indices[-1] ... for i, frame in enumerate(container.decode(video=0)): ... if i > end_index: ... break ... if i >= start_index and i in indices: ... frames.append(frame) ... return np.stack([x.to_ndarray(format="rgb24") for x in frames]) >>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len): ... ''' ... Sample a given number of frame indices from the video. ... Args: ... clip_len (`int`): Total number of frames to sample. ... frame_sample_rate (`int`): Sample every n-th frame. ... seg_len (`int`): Maximum allowed index of sample's last frame. ... Returns: ... indices (`list[int]`): List of sampled frame indices ... ''' ... converted_len = int(clip_len * frame_sample_rate) ... end_idx = np.random.randint(converted_len, seg_len) ... start_idx = end_idx - converted_len ... indices = np.linspace(start_idx, end_idx, num=clip_len) ... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64) ... return indices >>> >>> file_path = hf_hub_download( ... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset" ... ) >>> container = av.open(file_path) >>> >>> indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames) >>> video = read_video_pyav(container, indices) >>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") >>> model = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics") >>> inputs = image_processor(list(video), return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... logits = outputs.logits >>> >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) eating spaghetti< > Update on GitHub
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4