A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from https://huggingface.co/microsoft/kosmos-2-patch14-224 below:

Website Navigation


microsoft/kosmos-2-patch14-224 ยท Hugging Face

Kosmos-2: Grounding Multimodal Large Language Models to the World [An image of a snowman warming himself by a fire.]

This Hub repository contains a HuggingFace's transformers implementation of the original Kosmos-2 model from Microsoft.

How to Get Started with the Model

Use the code below to get started with the model.

import requests

from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq


model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224")
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")

prompt = "<grounding>An image of"

url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png"
image = Image.open(requests.get(url, stream=True).raw)


image.save("new_image.jpg")
image = Image.open("new_image.jpg")

inputs = processor(text=prompt, images=image, return_tensors="pt")

generated_ids = model.generate(
    pixel_values=inputs["pixel_values"],
    input_ids=inputs["input_ids"],
    attention_mask=inputs["attention_mask"],
    image_embeds=None,
    image_embeds_position_mask=inputs["image_embeds_position_mask"],
    use_cache=True,
    max_new_tokens=128,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]


processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False)

print(processed_text)



processed_text, entities = processor.post_process_generation(generated_text)

print(processed_text)


print(entities)

Tasks

This model is capable of performing different tasks through changing the prompts.

First, let's define a function to run a prompt.

Click to expand
import requests

from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq


model = AutoModelForVision2Seq.from_pretrained("microsoft/kosmos-2-patch14-224")
processor = AutoProcessor.from_pretrained("microsoft/kosmos-2-patch14-224")

url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png"
image = Image.open(requests.get(url, stream=True).raw)

def run_example(prompt):

    inputs = processor(text=prompt, images=image, return_tensors="pt")
    generated_ids = model.generate(
      pixel_values=inputs["pixel_values"],
      input_ids=inputs["input_ids"],
      attention_mask=inputs["attention_mask"],
      image_embeds=None,
      image_embeds_position_mask=inputs["image_embeds_position_mask"],
      use_cache=True,
      max_new_tokens=128,
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    _processed_text = processor.post_process_generation(generated_text, cleanup_and_extract=False)
    processed_text, entities = processor.post_process_generation(generated_text)

    print(processed_text)
    print(entities)
    print(_processed_text)

Here are the tasks Kosmos-2 could perform:

Click to expand Multimodal Grounding โ€ข Phrase Grounding
prompt = "<grounding><phrase> a snowman</phrase>"
run_example(prompt)





โ€ข Referring Expression Comprehension
prompt = "<grounding><phrase> a snowman next to a fire</phrase>"
run_example(prompt)





Multimodal Referring โ€ข Referring expression generation
prompt = "<grounding><phrase> It</phrase><object><patch_index_0044><patch_index_0863></object> is"
run_example(prompt)





Perception-Language Tasks โ€ข Grounded VQA
prompt = "<grounding> Question: What is special about this image? Answer:"
run_example(prompt)





โ€ข Grounded VQA with multimodal referring via bounding boxes
prompt = "<grounding> Question: Where is<phrase> the fire</phrase><object><patch_index_0005><patch_index_0911></object> next to? Answer:"
run_example(prompt)





Grounded Image captioning โ€ข Brief
prompt = "<grounding> An image of"
run_example(prompt)





โ€ข Detailed
prompt = "<grounding> Describe this image in detail:"
run_example(prompt)





Draw the bounding bboxes of the entities on the image

Once you have the entities, you can use the following helper function to draw their bounding bboxes on the image:

Click to expand
import cv2
import numpy as np
import os
import requests
import torch
import torchvision.transforms as T

from PIL import Image


def is_overlapping(rect1, rect2):
    x1, y1, x2, y2 = rect1
    x3, y3, x4, y4 = rect2
    return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)


def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
    """_summary_
    Args:
        image (_type_): image or image path
        collect_entity_location (_type_): _description_
    """
    if isinstance(image, Image.Image):
        image_h = image.height
        image_w = image.width
        image = np.array(image)[:, :, [2, 1, 0]]
    elif isinstance(image, str):
        if os.path.exists(image):
            pil_img = Image.open(image).convert("RGB")
            image = np.array(pil_img)[:, :, [2, 1, 0]]
            image_h = pil_img.height
            image_w = pil_img.width
        else:
            raise ValueError(f"invaild image path, {image}")
    elif isinstance(image, torch.Tensor):
        image_tensor = image.cpu()
        reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
        reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
        image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
        pil_img = T.ToPILImage()(image_tensor)
        image_h = pil_img.height
        image_w = pil_img.width
        image = np.array(pil_img)[:, :, [2, 1, 0]]
    else:
        raise ValueError(f"invaild image format, {type(image)} for {image}")

    if len(entities) == 0:
        return image

    new_image = image.copy()
    previous_bboxes = []
    
    text_size = 1
    
    text_line = 1  
    box_line = 3
    (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
    base_height = int(text_height * 0.675)
    text_offset_original = text_height - base_height
    text_spaces = 3

    for entity_name, (start, end), bboxes in entities:
        for (x1_norm, y1_norm, x2_norm, y2_norm) in bboxes:
            orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
            
            
            color = tuple(np.random.randint(0, 255, size=3).tolist())
            new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)

            l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1

            x1 = orig_x1 - l_o
            y1 = orig_y1 - l_o

            if y1 < text_height + text_offset_original + 2 * text_spaces:
                y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
                x1 = orig_x1 + r_o

            
            (text_width, text_height), _ = cv2.getTextSize(f"  {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
            text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1

            for prev_bbox in previous_bboxes:
                while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
                    text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
                    text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
                    y1 += (text_height + text_offset_original + 2 * text_spaces)

                    if text_bg_y2 >= image_h:
                        text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
                        text_bg_y2 = image_h
                        y1 = image_h
                        break

            alpha = 0.5
            for i in range(text_bg_y1, text_bg_y2):
                for j in range(text_bg_x1, text_bg_x2):
                    if i < image_h and j < image_w:
                        if j < text_bg_x1 + 1.35 * c_width:
                            
                            bg_color = color
                        else:
                            
                            bg_color = [255, 255, 255]
                        new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)

            cv2.putText(
                new_image, f"  {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
            )
            
            previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))

    pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
    if save_path:
        pil_image.save(save_path)
    if show:
        pil_image.show()

    return new_image



url = "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.png"
image = Image.open(requests.get(url, stream=True).raw)


entities = [('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]


draw_entity_boxes_on_image(image, entities, show=True)

Here is the annotated image:

BibTex and citation info
@article{kosmos-2,
  title={Kosmos-2: Grounding Multimodal Large Language Models to the World},
  author={Zhiliang Peng and Wenhui Wang and Li Dong and Yaru Hao and Shaohan Huang and Shuming Ma and Furu Wei},
  journal={ArXiv},
  year={2023},
  volume={abs/2306}
}

@article{kosmos-1,
  title={Language Is Not All You Need: Aligning Perception with Language Models},
  author={Shaohan Huang and Li Dong and Wenhui Wang and Yaru Hao and Saksham Singhal and Shuming Ma and Tengchao Lv and Lei Cui and Owais Khan Mohammed and Qiang Liu and Kriti Aggarwal and Zewen Chi and Johan Bjorck and Vishrav Chaudhary and Subhojit Som and Xia Song and Furu Wei},
  journal={ArXiv},
  year={2023},
  volume={abs/2302.14045}
}

@article{metalm,
  title={Language Models are General-Purpose Interfaces},
  author={Yaru Hao and Haoyu Song and Li Dong and Shaohan Huang and Zewen Chi and Wenhui Wang and Shuming Ma and Furu Wei},
  journal={ArXiv},
  year={2022},
  volume={abs/2206.06336}
}

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4