๐ป
RaushanTurganbay/llava-onevision
๐ข
sflindrs/vlm_comparer
๐ป
kavaliha/llava-onevision
๐ป
makululinux/makulu-onevision
๐ป
raymerjacque/makulu-onevision
Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance:
Below is the model card of 0.5B LLaVA-Onevision model which is copied from the original LLaVA-Onevision model card that you can find here.
Model detailsModel type: LLaVA-Onevision is an open-source multimodal LLM trained by fine-tuning Qwen2 on GPT-generated multimodal instruction-following data. LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open LMMs in three important computer vision scenarios: single-image, multi-image, and video scenarios. Importantly, the design of LLaVA-OneVision allows strong transfer learning across different modalities/scenarios, yielding new emerging capabilities. In particular, strong video understanding and cross-scenario capabilities are demonstrated through task transfer from images to videos.
Model date: LLaVA-Onevision-0.5-ov was added in August 2024.
Paper or resources for more information: https://llava-vl.github.io/
First, make sure to have transformers
installed from branch or transformers >= 4.45.0
. The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template by applying chat template:
pipeline
:
Below we used "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
checkpoint.
from transformers import pipeline
pipe = pipeline("image-text-to-text", model="llava-onevision-qwen2-0.5b-ov-hf")
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"},
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
],
},
]
out = pipe(text=messages, max_new_tokens=20)
print(out)
>>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}]
Using pure transformers
:
Below is an example script to run generation in float16
precision on a GPU device:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What are these?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
From transformers>=v4.48, you can also pass image/video url or local path to the conversation history, and let the chat template handle the rest. Chat template will load the image for you and return inputs in torch.Tensor
which you can pass directly to model.generate()
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
{"type": "text", "text": "What is shown in this image?"},
],
},
]
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors"pt")
output = model.generate(**inputs, max_new_tokens=50)
Model optimization 4-bit quantization through bitsandbytes
library
First make sure to install bitsandbytes
, pip install bitsandbytes
and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn
. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
Usage w/ Transformers.js
If you haven't already, you can install the Transformers.js JavaScript library from NPM using:
npm i @huggingface/transformers
Example: Multi-round conversations w/ PKV caching
import { AutoProcessor, AutoTokenizer, LlavaOnevisionForConditionalGeneration, RawImage } from '@huggingface/transformers';
const model_id = 'llava-hf/llava-onevision-qwen2-0.5b-ov-hf';
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);
const model = await LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, {
dtype: {
embed_tokens: 'fp16',
vision_encoder: 'fp16',
decoder_model_merged: 'q4',
},
});
const prompt = 'What does the text say?';
const messages = [
{ role: 'system', content: 'Answer the question.' },
{ role: 'user', content: `<image>\n${prompt}` }
]
const text = tokenizer.apply_chat_template(messages, { tokenize: false, add_generation_prompt: true });
const text_inputs = tokenizer(text);
const url = 'https://huggingface.co/qnguyen3/nanoLLaVA/resolve/main/example_1.png';
const image = await RawImage.fromURL(url);
const vision_inputs = await processor(image);
const { past_key_values, sequences } = await model.generate({
...text_inputs,
...vision_inputs,
do_sample: false,
max_new_tokens: 64,
return_dict_in_generate: true,
});
const answer = tokenizer.decode(
sequences.slice(0, [text_inputs.input_ids.dims[1], null]),
{ skip_special_tokens: true },
);
console.log(answer);
const new_messages = [
...messages,
{ role: 'assistant', content: answer },
{ role: 'user', content: 'How does the text correlate to the context of the image?' }
]
const new_text = tokenizer.apply_chat_template(new_messages, { tokenize: false, add_generation_prompt: true });
const new_text_inputs = tokenizer(new_text);
const output = await model.generate({
...new_text_inputs,
past_key_values,
do_sample: false,
max_new_tokens: 256,
});
const new_answer = tokenizer.decode(
output.slice(0, [new_text_inputs.input_ids.dims[1], null]),
{ skip_special_tokens: true },
);
console.log(new_answer);
Citation
@misc{li2024llavaonevisioneasyvisualtask,
title={LLaVA-OneVision: Easy Visual Task Transfer},
author={Bo Li and Yuanhan Zhang and Dong Guo and Renrui Zhang and Feng Li and Hao Zhang and Kaichen Zhang and Yanwei Li and Ziwei Liu and Chunyuan Li},
year={2024},
eprint={2408.03326},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2408.03326},
}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4