๐ต
facebook/MusicGen
๐ผ
Surn/UnlimitedMusicGen
๐ป
amphion/maskgct
๐จ
stepfun-ai/Step1X-3D
๐
eduagarcia/open_pt_llm_leaderboard
๐
vectara/leaderboard
๐
Zeyue7/AudioX
๐ต
facebook/MelodyFlow
๐ฅ
amphion/Text-to-Speech
๐
FunAudioLLM/ThinkSound
๐ต
GrandaddyShmax/MusicGen_Plus
๐ป
cocktailpeanut/maskgct
The developers of the Text-To-Text Transfer Transformer (T5) write:
With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task.
T5-Base is the checkpoint with 220 million parameters.
The developers write in a blog post that the model:
Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task, including machine translation, document summarization, question answering, and classification tasks (e.g., sentiment analysis). We can even apply T5 to regression tasks by training it to predict the string representation of a number instead of the number itself.
See the blog post and research paper for further details.
Out-of-Scope UseMore information needed.
Bias, Risks, and LimitationsMore information needed.
RecommendationsMore information needed.
Training Details Training DataThe model is pre-trained on the Colossal Clean Crawled Corpus (C4), which was developed and released in the context of the same research paper as T5.
The model was pre-trained on a on a multi-task mixture of unsupervised (1.) and supervised tasks (2.). Thereby, the following datasets were being used for (1.) and (2.):
In their abstract, the model developers write:
In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks.
The framework introduced, the T5 framework, involves a training procedure that brings together the approaches studied in the paper. See the research paper for further details.
Evaluation Testing Data, Factors & MetricsThe developers evaluated the model on 24 tasks, see the research paper for full details.
ResultsFor full results for T5-Base, see the research paper, Table 14.
Environmental ImpactCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
BibTeX:
@article{2020t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {140},
pages = {1-67},
url = {http://jmlr.org/papers/v21/20-074.html}
}
APA:
This model card was written by the team at Hugging Face.
How to Get Started with the ModelUse the code below to get started with the model.
Click to expandfrom transformers import T5Tokenizer, T5Model
tokenizer = T5Tokenizer.from_pretrained("t5-base")
model = T5Model.from_pretrained("t5-base")
input_ids = tokenizer(
"Studies have been shown that owning a dog is good for you", return_tensors="pt"
).input_ids
decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids
outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
last_hidden_states = outputs.last_hidden_state
See the Hugging Face T5 docs and a Colab Notebook created by the model developers for more examples.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4